scholarly journals Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

2014 ◽  
Vol 28 (2) ◽  
pp. 280-289 ◽  
Author(s):  
T. T. T. Cu ◽  
T. X. Nguyen ◽  
J. M. Triolo ◽  
L. Pedersen ◽  
V. D. Le ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3573 ◽  
Author(s):  
Meneses-Quelal Orlando ◽  
Velázquez-Martí Borja

The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.


2021 ◽  
Vol 6 (3) ◽  
pp. 135-144
Author(s):  
Yelizaveta Chernysh ◽  
◽  
Vladimir Shtepa ◽  
Igor Roy ◽  
Viktoriia Chubur ◽  
...  

This article is devoted to the analysis and prospects of using different types of organic waste to achieve environmental goals. Due to the unique climate and natural resources, Ukraine has significant potential for biomass, the processing of which should solve urgent problems with the disposal of waste, as well as the production of alternative energy sources and biofertilizers. The preferred substrates for anaerobic digestion in Ukraine, considering the technological feasibility, availability, and volume are animal manure (cattle, pigs), bird droppings, plant residues, industrial sludge, common sludges. After analyzing the statistics for 2015-2019, the groups of dominant wastes were identified, and with the help of the built-in function "TREND," the forecast of the waste potential with an organic component for 2021-2026 was constructed. Examining the obtained indicators for different types of waste, the reasons for the tendency of decrease or increase in their formation in the next five years were revealed. The direction of enhancing the sustainability of bioenergy, achieving environmental goals through the bioprocessing of organic waste associated with the ecological safety of production processes were discussed.


2021 ◽  
Vol 21 (5) ◽  
pp. 1221
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

The biogas fermentation from animal manure and organic waste was investigated with a comparison percentage of raw material used inside the digester with the anaerobic digestion process. Animal manure consists of cow dung and chicken manure, while organic waste consists of tofu liquid waste and cabbage waste. This study used a batch process that was operated at 55 °C incubator temperature for 90 days. The results of experimental data were predicted with a modified Gompertz model and first-order kinetic model. The equation of the modified Gompertz model to predict biogas production was  with  is cumulative production of methane; P∞ = methane production potential; Rm = maximum specific speed methane production; λ = is lag phase period or minimum time to produce biogas; e = math constant (2.7182) and t = biogas production cumulative time. The equation first-order kinetic model was Y = Ym (1-exp(-k). The highest biogas yield was obtained by variable 3 in both kinetic studies compared to 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. Gompertz's kinetic study predicted variable three would produce 3273.20 mL/g of total solid (TS). In comparison, the first-order kinetic model predicted that variable three would produce 3517.95 mL/(g Ts).


2007 ◽  
Vol 118 (1-4) ◽  
pp. 173-182 ◽  
Author(s):  
Thomas Amon ◽  
Barbara Amon ◽  
Vitaliy Kryvoruchko ◽  
Werner Zollitsch ◽  
Karl Mayer ◽  
...  

BioResources ◽  
2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Ming Wang ◽  
Wenzhe Li ◽  
Shuang Liu ◽  
Dan Liu ◽  
Lili Yin ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 623-633
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate abiogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste.The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy.Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysisand kinetics model based on the Gompertz equation was obtained for the variable with the highest yield, compared to 70% cow dung, 15% chicken manure, and 15% tofu liquid waste and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also conluded that the use of  tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 32 ◽  
Author(s):  
Mohammad Al-Addous ◽  
Motasem N. Saidan ◽  
Mathhar Bdour ◽  
Mohammad Alnaief

The potential benefits of the application of a circular economy—converting biomass at Za'atari Syrian refugee camps into energy—was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential biogas yield. Numerous calorific tests were also carried out. The tangential benefit of the co-digestion that was noticed was that it lowered the value of the total solid content in the mixture to the recommended values for wet digestion without the need for freshwater. To test the potential methane production, the automated methane potential test system (AMPTS) and the graduated tubes in the temperature-controlled climate room GB21 were utilized. Also, calorific values were determined for the organic waste and sludge on both a dry and a wet basis. The maximum biogas production from 100% organic waste and 100% sludge using AMPTS was 153 m3 ton-1 and 5.6 m3 ton-1, respectively. Methane yield reached its maximum at a Vs sub/ Vs inoculum range of 0.25–0.3. In contrast, the methane yield decreased when the Vs sub/ Vs inoculum exceeded 0.46. The optimum ratio of mixing of municipal food waste to sludge must be carefully selected to satisfy the demands of an energy production pilot plant and avoid the environmental issues associated with the sludge amount at wastewater treatment plants (WWTPs). A possible ratio to start with is 60–80% organic waste, which can produce 21–65 m3· biogas ton-1 fresh matter (FM). The co-digestion of organic waste and sludge can generate 38 Nm3/day of methane, which, in theory, can generate about 4 MW in remote refugee camps.


2021 ◽  
Vol 11 (15) ◽  
pp. 6884
Author(s):  
Mauricio Hernández-Sarabia ◽  
Juan Sierra-Silva ◽  
Liliana Delgadillo-Mirquez ◽  
Julián Ávila-Navarro ◽  
Laura Carranza

Coffee is a highly productive agricultural product in the department of Tolima. The wet fermentation process of coffee generates about 80% of the waste, which is highly contaminated with organic matter that pollutes water sources, so anaerobic co-digestion techniques are implemented in coffee wastewater using Taiwan type biodigesters. According to the study of three biodigesters fed with coffee waste and animal manure, the aim is to show their potential application in coffee farms. These biodigesters generated a biogas production with CH4 concentrations between 49.1% ± 4.6 and 58.1% ± 2.4 in volume, in addition to the benefit of the biol used as fertilizer in the crops. The biogas produced can be used for cooking and can save around USD 40.17 in natural gas. Therefore, the biodigester is a potential tool to mitigate the harmful effects of coffee cultivation on the surrounding ecosystem and can project coffee production in a sustainable direction.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 878
Author(s):  
Apinya Singkhala ◽  
Chonticha Mamimin ◽  
Alissara Reungsang ◽  
Sompong O-Thong

A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.


Sign in / Sign up

Export Citation Format

Share Document