scholarly journals Effects of Amino Acids Fermentation By-product on Fermentation Quality and In situ Rumen Degradability of Italian Ryegrass (Lolium multiflorum) Silage

2004 ◽  
Vol 17 (5) ◽  
pp. 633-637 ◽  
Author(s):  
W. Yimiti ◽  
M. S. Yahaya ◽  
H. Hiraoka ◽  
Y. Yamamoto ◽  
K. Inui ◽  
...  
2020 ◽  
pp. 1-9
Author(s):  
Keum-Ah Lee ◽  
Youngnam Kim ◽  
Hossein Alizadeh ◽  
David W.M. Leung

Abstract Seed priming with water (hydropriming or HP) has been shown to be beneficial for seed germination and plant growth. However, there is little information on the effects of seed priming with amino acids and casein hydrolysate (CH) compared with HP, particularly in relation to early post-germinative seedling growth under salinity stress. In this study, Italian ryegrass seeds (Lolium multiflorum L.) were primed with 1 mM of each of the 20 protein amino acids and CH (200 mg l−1) before they were germinated in 0, 60 and 90 mM NaCl in Petri dishes for 4 d in darkness. Germination percentage (GP), radicle length (RL) and peroxidase (POD) activity in the root of 4-d-old Italian ryegrass seedlings were investigated. Generally, when the seeds were germinated in 0, 60 and 90 mM NaCl, there was no significant difference in GP of seeds among various priming treatments, except that a higher GP was observed in seeds of HP treatment compared with the non-primed seeds when incubated in 60 mM NaCl. When incubated in 60 and 90 mM NaCl, seedlings from seeds primed with L-methionine or CH exhibited greater RL (greater protection against salinity stress) and higher root POD activity than those from non-primed and hydro-primed seeds. Under salinity stress, there were higher levels of malondialdehyde (MDA) in the root of 4-d-old Italian ryegrass seedlings, a marker of oxidative stress, but seed priming with CH was effective in reducing the salinity-triggered increase in MDA content. These results suggest that priming with L-methionine or CH would be better than HP for the protection of seedling root growth under salinity stress and might be associated with enhanced antioxidative defence against salinity-induced oxidative stress.


2021 ◽  
Vol 66 (No. 8) ◽  
pp. 302-314
Author(s):  
Alemayehu Worku ◽  
Róbert Tóthi ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

This study was conducted using three multiparous non-lactating rumen-cannulated Holstein-Friesian dairy cows, with the objective of evaluating the in situ ruminal degradability and fermentation characteristics of novel mixtures of winter cereal and Italian ryegrass (Lolium multiflorum Lam.) plus winter cereal silages (mixture A: triticale, oats, barley and wheat; mixture B: triticale, barley and wheat; mixture C: Italian ryegrass and oats; mixture D: Italian ryegrass, oats, triticale, barley and wheat). The rumen fermentation study was conducted replacing the ensiled mixtures (experimental diets) with vetch-triticale haylage in a total mixed ration (control diet). It was found that the effective protein degradability at 0.08 rumen outflow rates was 80.6% (mixture A), 66.2% (mixture B), 79.7% (mixture C) and 79.3% (mixture D). The effective neutral detergent fibre (NDF) and acid detergent fibre (ADF) effective degradability at 0.08 rumen outflow rates was 18.0% and 17.7% (mixture A), 19.7% and 20.5% (mixture B), 19.1% and 17.0% (mixture C), and 15.2% and 14.6% (mixture D), respectively. Different dietary treatments did not change (P > 0.05) the rumen fermentation characteristics as there was no difference (P > 0.05) between control and experimental diets, and the inclusion of 40–55% Italian ryegrass (mixture C and D) did not cause any difference. These results suggest that the mixture of winter cereals and Italian ryegrass plus winter cereal-based silages had good potentially degradable dry matter, effective dry matter and effective protein degradability at 0.01, 0.05 and 0.08 rumen outflow rates without affecting the rumen environment maintaining neutral pH. The ensiled mixtures had a moderate level of potentially degradable NDF and ADF fractions.


Author(s):  
M.T. Dentinho ◽  
K. Khazaal ◽  
J.M. Ribeiro ◽  
E.R. Ørskov

By using separated values of kinetics of in situ dry matter (DM) degradation or in vitro gas production (Menke and Steingass, 1988) of leguminosae hays, Khazaal et al, (1993) reported high correlation with intake (r= 0.88; r= 0.79) and in vivo DM digestibility (DMD) (r= 0.94; r= 0.88). The aim of the present study was to extend the range of samples used and compare the ability of the 2 stages in vitro digestibility (Tilley and Terry, 1963), the in situ DM degradation or the gas production techniques to predict daily intake (g DM/ kgW0.75) and in vivo DM digestibility (DMD) of 19 leguminous and graminaceous hays fed to sheep.Three harvesting stages (early bloom EB, mid bloom MB or in seed IS) made from lucerne (Medicago sativa), sweet clover (Melilotus segetalis), Persian clover (Trifolium resupinatum), Rye (Secale cereale), Triticale (Triticale hexaploid), oat (Avena stativa) and a pre-bloom (PB) Italian ryegrass (Lolium multiflorum ). Each hay was fed ad libitum to 4 Merino male sheep and their intake and in vivo DMD recorded. Gas production (ml/ 200 mg DM) or in situ DM degradation (g/ 100 g DM) were determined as described by Khazaal et al, (1993) after 6, 12, 24, 48, 72 or 96 h incubation. Measured gas production or DM degradation values were fitted to the equation p=a+b(l-e-ct)(McDonald, 1981) where p is gas production or DM degradation at time t and a, b and c are constants. For nylon bag the washing loss (soluble fraction) was defined as A, the insoluble but fermentable matter was defined as B=(a+b)-A, and c is the rate of fermentation or degradation (Ørskov and Ryle, 1990).


2018 ◽  
Vol 44 (2) ◽  
pp. 219-232 ◽  
Author(s):  
S.J Jang ◽  
K.R. Kim ◽  
Y.B. Yun ◽  
S.S. Kim ◽  
Y.I Kuk

Euphytica ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Wenqing Tan ◽  
Di Zhang ◽  
Nana Yuyama ◽  
Jun Chen ◽  
Shinichi Sugita ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 556-563 ◽  
Author(s):  
Veladi Panduranga ◽  
Girish Prabhu ◽  
Roopesh Kumar ◽  
Basavaprabhu Basavaprabhu ◽  
Vommina V. Sureshbabu

A simple and efficient method for the synthesis of N,N’-orthogonally protected imide tethered peptidomimetics is presented. The imide peptidomimetics were synthesized by coupling the in situ generated selenocarboxylate of Nα-protected amino acids with Nα-protected amino acid azides in good yields.


Sign in / Sign up

Export Citation Format

Share Document