scholarly journals ANÁLISE DAS PROPRIEDADES DO CONCRETO UTILIZANDO RESÍDUOS DA CONSTRUÇÃO CIVIL

2018 ◽  
Vol 10 (Especial) ◽  
pp. 60-64
Author(s):  
Leandro Miranda dos Santos ◽  
Larissa Queiroz Minillo ◽  
Daniele Araujo Altran ◽  
Filipe Bittencourt Figueiredo

The impacts caused by RCCs are growing exponentially each year, which is why it is necessary to create measures to mitigate and minimize such an effect. The purpose of this research was to evaluate the physicalmechanical properties of the concrete from the gradual replacement of the natural fine aggregate by the recycled aggregate. The recycled concrete was made with substitutions of 20, 40, 60, 80 and 100% of recycled aggregate, whose water / cement factor was 0.7. Test specimens were produced and after the cure time of 7, 14 and 28 days the specimens were ruptured. It was possible to analyze that with the increase of the recycled aggregate substitution, the concrete strength increased, but did not reach an average resistance of 20 Mpa. Therefore it is possible to conclude that the use of recycled aggregate in the manufacture of low resistance concrete is.

2013 ◽  
Vol 368-370 ◽  
pp. 1080-1085 ◽  
Author(s):  
Yong Jun Qin ◽  
Lei Li ◽  
Aihemaiti Yibulayin ◽  
Guang Tai Zhang ◽  
Rui Liang

Recycled aggregate performance vary with different native concrete strength and use environment. Recycled fine aggregate was obtained after the primary concrete was broken and screened. According to Recycled coarse aggregate for concrete and mortar (GB/T 25176-2010), the physical properties of the different types of recycled fine aggregate were analyzed, in addition, determine the classification. The results shows that the properties of recycled fine aggregate all meet the level and they are vary by strengths of its maternal primary concrete and using environments. The overall performance of fine aggregate of high strength primary concrete is the best, followed by the low strength concrete and the moderate strength concrete.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2014 ◽  
Vol 1054 ◽  
pp. 199-204 ◽  
Author(s):  
Wojciech Kubissa ◽  
Roman Jaskulski ◽  
Jacek Szpetulski ◽  
Anna Gabrjelska ◽  
Ewelina Tomaszewska

In the article the possibility of utilization of two waste materials: Recycled Concrete Aggregate (RCA) fraction 0-2 mm and Class C fly ash (from lignite burning power plant) in Controlled Low-Strength Material (CLSM) was presented. The research covered twelve different mixtures. The mixtures differed in cement and fly ash content as well as content of the fine aggregate. As a fine aggregate 0-2 mm fraction of RCA or river sand were used. The results showed that use the fine fraction RCA instead of sand does not cause technological problems and allows, depending on the needs, obtaining the material with different properties and a wide range of applications.


2017 ◽  
Vol 11 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Haicheng Niu ◽  
Yonggui Wang ◽  
Xianggang Zhang ◽  
Xiaojing Yin

Introduction: Freeze-thaw resistance of recycled aggregate concrete with partial or total replacement of recycled aggregate compared with that of natural aggregate concrete was investigated in this paper. Method: Ninety specimens were fabricated to study the influence of different recycled aggregate replacement ratios on the surface scaling, mass loss, and residual compressive strength after 100 freeze-thaw cycles. Results: The experiment results indicate that the type of recycled aggregate and its replacement ratio have significant effects on the freeze-thaw performance. The cubic compressive strength of recycled aggregate concrete is overall slightly lower than that of normal concrete. After 100 freeze-thaw cycles, the compressive strength decreases and the reduction extent increases with increasing replacement rate of recycled aggregate. The surface scaling of reinforced recycled concrete prisms tends to be more severe with the increase of freeze-thaw cycles. Conclusion: Furthermore, a notable rise in mass loss and the bearing capacity loss is also found as the substitution ratio increases. Under the same replacement rate, recycled fine aggregate causes more negative effects on the freeze-thaw resistance than recycled coarse aggregate.


Author(s):  
Sung-Mo Choi ◽  
Won Ho Choi ◽  
Kangseok Lee ◽  
Jae-Yong Ryoo ◽  
Sunhee Kim ◽  
...  

Recycled aggregate is an environmentally self-sustainable solution that can reduce construction waste and replace natural aggregates. However, there is a disadvantage in concrete such as initial strength drop and long-term strength development. Therefore, the interaction effect of the two materials can be expected by filling the cyclic aggregate concrete in the CFT column. In order to develop a concrete with compressive strength of 50 MPa as a recycled aggregate, we carried out a mixing experiment and fabricated 18 specimens to confirm the compressive behavior of a RCFT (Recycled Concrete Filled Tube) column that can be applied to actual buildings. Variable is the shape and thickness of steel pipe, concrete strength and mixing ratio, and coarse aggregate and fine aggregate are all used as recycled aggregate. The optimum mixing ratio for recycled aggregate concrete to be filled in the CFT filled steel pipe was found through three concrete preliminary mixing experiments. In addition, the compression test of the RCFT column was carried out to observe and analyze the buckling shape of the CFT column. Based on the analysis of the buckling configuration and the experimental data, the load-displacement curves of the specimens were drawn and the compressive behavior was analyzed. 


Author(s):  
Carine N. S. Reis ◽  
Paulo R. L. Lima ◽  
Mônica B. Leite

The operation of reinforced concrete structures is directly associated with the adhesion between the steel bar and the concrete, which allows the internal forces to be transferred to the reinforcement during the process of loading the structural elements. The modification of the concrete composition, with the introduction of recycled aggregate from construction and demolition waste (CDW), affects the steel-concrete interface and can modify the bonding stress, which is also influenced by the type and diameter of the bar used. In this work, the influence of the recycled fine aggregate (RFA) and types of steel bar on the steel-concrete bond was experimentally evaluated using the pullout test. Conventional concrete and recycled concrete, with RFA replacement level of 25%, were produced. Two types of steel rebars (i.e.,plain and deformed) with  diameters of 10.0 and 16.0mm were considered in this paper. The results indicate a reduction in the adhesion stress with the introduction of recycled aggregate, but this trend is influenced by the diameter of the bar used. The use of ribbed bars modifies the stress bon-slip behavior, with an increase in the average bond strength, which is also observed with the reduction of the diameter of the bar.


2020 ◽  
Vol 12 (24) ◽  
pp. 10278
Author(s):  
Nikola Tošić ◽  
Snežana Marinković ◽  
Yahya Kurama

Recycled aggregate concrete (RAC), i.e., concrete produced with recycled concrete aggregate (RCA) has been heavily investigated recently, and the structural design of RAC is entering into design codes. Nonetheless, the service load deflection behavior of RAC remains a challenge due to its larger shrinkage and creep, and lower modulus of elasticity. A novel solution to this challenge is the use of layered concrete, i.e., casting of horizontal layers of different concretes. To investigate the potential benefits and limits of layered concrete, this study contains a numerical parametric assessment of the time-dependent sustained service load deflections and environmental impacts of homogeneous and layered NAC and RAC one-way slabs. Four types of reinforced concrete slabs were considered: homogeneous slabs with 0%, 50% and 100% of coarse RCA (NAC, RAC50 and RAC100, respectively) and layered L-RAC100 slabs with the bottom and top halves consisting of RAC100 and NAC, respectively. In the deflection study, different statical systems, concrete strength classes and relative humidity conditions were investigated. The results showed that the layered L-RAC100 slabs performed as well as, or even better than, the NAC slabs due to the differential shrinkage between the layers. In terms of environmental performance, evaluated using a “cradle-to-gate” Life Cycle Assessment approach, the L-RAC100 slabs also performed as well as, or slightly better than, the NAC slabs. Therefore, layered NAC and RAC slabs can be a potentially advantageous solution from both structural and environmental perspectives.


2011 ◽  
Vol 250-253 ◽  
pp. 1651-1656 ◽  
Author(s):  
Qing Feng Huang ◽  
Da Fu Wang

By a static and repeated pull-out experiment between steel bar and recycled aggregate concrete, and bond-slip curves between recycled concrete with different recycled coarse aggregate(RCA) replacement percentages were recorded. Based on the analysis of the experimental results, replacement percentages of recycled concrete, cover thickness, anchorage length, concrete strength and loading method was investigated. At last, the bond-slip constitutive relation was also discussed.


2019 ◽  
Vol 25 (3) ◽  
pp. 601-616 ◽  
Author(s):  
Diogo Pedro ◽  
Mafalda Guedes ◽  
Jorge de Brito ◽  
Luís Evangelista

AbstractThe use of concrete-recycled aggregates to produce high-performance concrete is limited by insufficient correlation between resulting microstructure and its influence on mechanical performance reproducibility. This work addresses this issue in a sequential approach: concrete microstructure was systematically analyzed and characterized by scanning electron microscopy and results were correlated with concrete compressive strength and water absorption ability. The influence of replacing natural aggregates (NA) with recycled concrete aggregates (RCA), with different source concrete strength levels, of silica fume (SF) addition and of mixing procedure was tested. The results show that the developed microstructure depends on the concrete composition and is conditioned by the distinct nature of NA, recycled aggregates from high-strength source concrete, and recycled aggregates from low-strength source concrete. SF was only effective at concrete densification when a two-stage mixing approach was used. The highest achieved strength in concrete with 100% incorporation of RCA was 97.3 MPa, comparable to that of conventional high-strength concrete with NA. This shows that incorporation of significant amounts of RCA replacing NA in concrete is not only a realistic approach to current environmental goals, but also a viable route for the production of high-performance concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 794-799 ◽  
Author(s):  
Chang Yong Li ◽  
Guang Xin Li ◽  
Wen Jing Shao ◽  
Qi Guo ◽  
Rui Liu

On the basis of experimental results, this paper discusses the shear-crack behaviors such as shear-cracking force and shear-crack width of reinforced full-recycled aggregate concrete beams. The full-recycled aggregate concrete was developed for the sustainable development in civil engineering, in which the coarse aggregate was the recycled aggregate made of abandoned concrete, and the fine aggregate was the machine-made sand. Sixteen beams, six of them without stirrups, were tested with the shear-span ratio varying as 1.5, 2.0 and 3.0, and the ratio of stirrups varying from 0.19% to 0.35%. The results showed that the shear-cracking force of the beam was mainly affected by the shear-span ratio, the width of shear-cracks intersecting stirrups decreased with the increasing ratio of stirrups, but the maximum crack width almost exceeded the limit 0.3mm in the first class environmental condition specified in Chinese code GB50010-2010. Comparing the calculation results by substituting the test parameters of full-recycled aggregate concrete beams into the formula of ordinary reinforced concrete beams, the lower resistance of reinforced recycled concrete beam to shear-cracking, and the larger crack width intersecting stirrups should be noted in the structural design. Based on the test data, the formula for calculating the shear-cracking force and the shear-crack width of reinforced full-recycled aggregate concrete beams are suggested.


Sign in / Sign up

Export Citation Format

Share Document