scholarly journals A Deep Learning Approach to Mobile Camera Image Signal Processing

Author(s):  
Jose Ivson S. Silva ◽  
Gabriel G. Carvalho ◽  
Marcel Santana Santos ◽  
Diego J. C. Santiago ◽  
Lucas Pontes De Albuquerque ◽  
...  

The quality of the images obtained from mobile cameras has been an important feature for modern smartphones. The camera Image Signal Processing (ISP) is a significant procedure when generating high-quality images. However, the existing algorithms in the ISP pipeline need to be tuned according to the physical resources of the image capture, limiting the final image quality. This work aims at replacing the camera ISP pipeline with a deep learning model that can better generalize the procedure. A Deep Neural Network based on the UNet architecture was employed to process RAW images into RGB. Pre-processing stages were applied, and some resources for training were added incrementally. The results demonstrated that the test images were obtained efficiently, indicating that the replacement of traditional algorithms by deep models is indeed a promising path.

2019 ◽  
Vol 9 (11) ◽  
pp. 326 ◽  
Author(s):  
Hong Zeng ◽  
Zhenhua Wu ◽  
Jiaming Zhang ◽  
Chen Yang ◽  
Hua Zhang ◽  
...  

Deep learning (DL) methods have been used increasingly widely, such as in the fields of speech and image recognition. However, how to design an appropriate DL model to accurately and efficiently classify electroencephalogram (EEG) signals is still a challenge, mainly because EEG signals are characterized by significant differences between two different subjects or vary over time within a single subject, non-stability, strong randomness, low signal-to-noise ratio. SincNet is an efficient classifier for speaker recognition, but it has some drawbacks in dealing with EEG signals classification. In this paper, we improve and propose a SincNet-based classifier, SincNet-R, which consists of three convolutional layers, and three deep neural network (DNN) layers. We then make use of SincNet-R to test the classification accuracy and robustness by emotional EEG signals. The comparable results with original SincNet model and other traditional classifiers such as CNN, LSTM and SVM, show that our proposed SincNet-R model has higher classification accuracy and better algorithm robustness.


2021 ◽  
Vol 3 (3) ◽  
pp. 234-248
Author(s):  
N. Bhalaji

In recent days, we face workload and time series issue in cloud computing. This leads to wastage of network, computing and resources. To overcome this issue we have used integrated deep learning approach in our proposed work. Accurate prediction of workload and resource allocation with time series enhances the performance of the network. Initially the standard deviation is reduced by applying logarithmic operation and then powerful filters are adopted to remove the extreme points and noise interference. Further the time series is predicted by integrated deep learning method. This method accurately predicts the workload and sequence of resource along with time series. Then the obtained data is standardized by a Min-Max scalar and the quality of the network is preserved by incorporating network model. Finally our proposed method is compared with other currently used methods and the results are obtained.


Author(s):  
Pratik Kanani ◽  
Mamta Chandraprakash Padole

Cardiovascular diseases are a major cause of death worldwide. Cardiologists detect arrhythmias (i.e., abnormal heart beat) with the help of an ECG graph, which serves as an important tool to recognize and detect any erratic heart activity along with important insights like skipping a beat, a flutter in a wave, and a fast beat. The proposed methodology does ECG arrhythmias classification by CNN, trained on grayscale images of R-R interval of ECG signals. Outputs are strictly in the terms of a label that classify the beat as normal or abnormal with which abnormality. For training purpose, around one lakh ECG signals are plotted for different categories, and out of these signal images, noisy signal images are removed, then deep learning model is trained. An image-based classification is done which makes the ECG arrhythmia system independent of recording device types and sampling frequency. A novel idea is proposed that helps cardiologists worldwide, although a lot of improvements can be done which would foster a “wearable ECG Arrhythmia Detection device” and can be used by a common man.


Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


2020 ◽  
Vol 10 (19) ◽  
pp. 6882
Author(s):  
Kostadin Mishev ◽  
Aleksandra Karovska Ristovska ◽  
Dimitar Trajanov ◽  
Tome Eftimov ◽  
Monika Simjanoska

This paper presents MAKEDONKA, the first open-source Macedonian language synthesizer that is based on the Deep Learning approach. The paper provides an overview of the numerous attempts to achieve a human-like reproducible speech, which has unfortunately shown to be unsuccessful due to the work invisibility and lack of integration examples with real software tools. The recent advances in Machine Learning, the Deep Learning-based methodologies, provide novel methods for feature engineering that allow for smooth transitions in the synthesized speech, making it sound natural and human-like. This paper presents a methodology for end-to-end speech synthesis that is based on a fully-convolutional sequence-to-sequence acoustic model with a position-augmented attention mechanism—Deep Voice 3. Our model directly synthesizes Macedonian speech from characters. We created a dataset that contains approximately 20 h of speech from a native Macedonian female speaker, and we use it to train the text-to-speech (TTS) model. The achieved MOS score of 3.93 makes our model appropriate for application in any kind of software that needs text-to-speech service in the Macedonian language. Our TTS platform is publicly available for use and ready for integration.


2020 ◽  
Vol 39 (10) ◽  
pp. 734-741
Author(s):  
Sébastien Guillon ◽  
Frédéric Joncour ◽  
Pierre-Emmanuel Barrallon ◽  
Laurent Castanié

We propose new metrics to measure the performance of a deep learning model applied to seismic interpretation tasks such as fault and horizon extraction. Faults and horizons are thin geologic boundaries (1 pixel thick on the image) for which a small prediction error could lead to inappropriately large variations in common metrics (precision, recall, and intersection over union). Through two examples, we show how classical metrics could fail to indicate the true quality of fault or horizon extraction. Measuring the accuracy of reconstruction of thin objects or boundaries requires introducing a tolerance distance between ground truth and prediction images to manage the uncertainties inherent in their delineation. We therefore adapt our metrics by introducing a tolerance function and illustrate their ability to manage uncertainties in seismic interpretation. We compare classical and new metrics through different examples and demonstrate the robustness of our metrics. Finally, we show on a 3D West African data set how our metrics are used to tune an optimal deep learning model.


Sign in / Sign up

Export Citation Format

Share Document