scholarly journals Human Herpesviruses in Hematologic Diseases

Author(s):  
Mrta Csire ◽  
Gbor Mikal
2007 ◽  
Vol 177 (4S) ◽  
pp. 27-27
Author(s):  
Dong Wan Sohn ◽  
Kang Jun Cho ◽  
Sae Woong Kim ◽  
Yong-Hyun Cho
Keyword(s):  

2015 ◽  
pp. 54-62 ◽  
Author(s):  
Elizaveta Nikitskaya ◽  
◽  
Elena Maryukhnich ◽  
Polina Savvinova ◽  
Natalia Pinegina ◽  
...  

1992 ◽  
Vol 57 (8) ◽  
pp. 1577-1612 ◽  
Author(s):  
Pavel Kramata ◽  
Ivan Votruba

The properties of human herpesvirus-encoded enzymes are reviewed and the importance of sequence analysis of viral genomes as well as the experiments on characteristics of enzymes isolated from infected cell cultures are emphasized. The following enzymes are described in detail: DNA replication complex consisting of DNA polymerase, DNA helicase-primase, single-stranded DNA binding protein and origin binding protein, further thymidine kinase, ribonucleotide reductase, deoxyuridine triphosphatase as well as uracil-DNA-glycosylase, deoxyribonuclease and protein kinase. The importance of these enzymes from the point of view of antiviral chemotherapy is discussed.


2021 ◽  
Vol 22 (5) ◽  
pp. 2250
Author(s):  
Evita Athanasiou ◽  
Antonios N. Gargalionis ◽  
Fotini Boufidou ◽  
Athanassios Tsakris

The role of certain viruses in malignant brain tumor development remains controversial. Experimental data demonstrate that human herpesviruses (HHVs), particularly cytomegalovirus (CMV), Epstein–Barr virus (EBV) and human herpes virus 6 (HHV-6), are implicated in brain tumor pathology, although their direct role has not yet been proven. CMV is present in most gliomas and medulloblastomas and is known to facilitate oncomodulation and/or immunomodulation, thus promoting cancer cell proliferation, invasion, apoptosis, angiogenesis, and immunosuppression. EBV and HHV-6 have also been detected in brain tumors and high-grade gliomas, showing high rates of expression and an inflammatory potential. On the other hand, due to the neurotropic nature of HHVs, novel studies have highlighted the engagement of such viruses in the development of new immunotherapeutic approaches in the context of oncolytic viral treatment and vaccine-based strategies against brain tumors. This review provides a comprehensive evaluation of recent scientific data concerning the emerging dual role of HHVs in malignant brain pathology, either as potential causative agents or as immunotherapeutic tools in the fight against these devastating diseases.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 542
Author(s):  
Eduardo I. Tognarelli ◽  
Antonia Reyes ◽  
Nicolás Corrales ◽  
Leandro J. Carreño ◽  
Susan M. Bueno ◽  
...  

Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 185
Author(s):  
Maria Eugenia Ariza

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion Intolerance Disease (SEID) is a chronic multisystem illness of unconfirmed etiology. There are currently no biomarkers and/or signatures available to assist in the diagnosis of the syndrome and while numerous mechanisms have been hypothesized to explain the pathology of ME/CFS, the triggers and/or drivers remain unknown. Initial studies suggested a potential role of the human herpesviruses especially Epstein-Barr virus (EBV) in the disease process but inconsistent and conflicting data led to the erroneous suggestion that these viruses had no role in the syndrome. New studies using more advanced approaches have now demonstrated that specific proteins encoded by EBV could contribute to the immune and neurological abnormalities exhibited by a subgroup of patients with ME/CFS. Elucidating the role of these herpesvirus proteins in ME/CFS may lead to the identification of specific biomarkers and the development of novel therapeutics.


Sign in / Sign up

Export Citation Format

Share Document