scholarly journals Regulation of Mammary Development as It Relates to Changes in Milk Production Efficiency

Author(s):  
Emma Wall ◽  
Thomas McFadde
2007 ◽  
Vol 22 (1) ◽  
pp. 50-60 ◽  
Author(s):  
Marek Wroński ◽  
Marek Cichocki ◽  
Katarzyna Borkowska ◽  
Jan Redmer

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 13-13
Author(s):  
Joel M DeRouchey ◽  
Mike D Tokach ◽  
Robert D Goodband ◽  
Jason C Woodworth ◽  
Steve S Dritz ◽  
...  

Abstract Improvements in modern sow prolificacy have markedly increased the number of pigs weaned, thus the ability of sows to provide nutrients to support fetal growth and milk production has been enhanced. The goals of the gestation nutrition program consist of meeting the nutrient requirements for maintenance and growth and for adequate conceptus development, while managing body condition. Early gestation represents the best opportunity for replenishing body reserves, whereas in late gestation, both estimated protein deposition and energy requirement are exponentially increased and directed towards fetal growth and mammary development. Increased feed intake after breeding has been presumed to be detrimental to embryo survival; however, data with modern line sows demonstrates to feed thin sows to recover body condition as quickly as possible while avoiding feed deprivation immediately after breeding. Importance of body condition scoring remains unchanged: feed thin sows to bring back to adequate body condition and prevent over-conditioned sows at farrowing. A recent meta-analysis showed increasing late gestation feed intake seems to modestly improve piglet birth weight by 28 g per piglet in gilts and sows. Also, recent findings in gestating sows suggest modern genotypes have improved feed efficiency and propensity for growth. Therefore, increasing energy intake during late gestation has a modest effect on piglet birth weight and a negative effect on stillborn rate. Historically, lactation catabolism impacted subsequent reproductive performance of sows, particularly in first-parity. However, contemporary sows appear to be increasingly resistant to the negative effects of lactational catabolism. Even so, continued emphasis on maximizing lactation feed intake is critical to support milk production and prevent excessive lean tissue mobilization. Research data suggests that ad libitum feeding and offering lactation diets during the wean-to-estrus interval is not needed. Modern genetic sow lines appear to be more robust from a nutritional perspective than in the past.


1999 ◽  
Vol 1999 ◽  
pp. 199-199
Author(s):  
H.J. Biggadike ◽  
C.A. Collins ◽  
S.B. Drew ◽  
P.N. Johnson

It is common practice to rear dairy heifers to calve at 24 months of age and expect first lactation milk yields of up to 10,000 litres. This requires growth rates of at least 0.7kg/d during rearing. Research has indicated that high growth rates in the prepubertal period can have a deleterious effect on mammogenisis (Capuco et al 1995), and a significant reduction in potential milk production (Sejrsen et al 1996) due to impaired mammary development. However, not all studies have found such effects (Sejrsen et al 1996). As a consequence, strategies of rearing are being studied to identify the optimum pattern of growth around puberty to achieve high milk yields. Skeletal measurements have also been demonstrated to be related to first lactation yields (Hoffman 1996). This study investigated the consequences of differing growth rates between 100 and 300kg liveweight on the size and relative dimensions of Holstein heifers.


1992 ◽  
Vol 72 (2) ◽  
pp. 227-236 ◽  
Author(s):  
S. Wang ◽  
G. L. Roy ◽  
A. J. Lee ◽  
A. J. McAllister ◽  
T. R. Batra ◽  
...  

Early first lactation data from 2230 cows of five research herds of Agriculture Canada were used to study the interactions of genetic line by concentrate level, and sire by concentrate level and to estimate breeding values of sires. The genetic lines were defined as Holstein (H), Ayrshire (A), and H × A or A × H (C). The interactions of sire by concentrate level were studied separately using progeny of five different mating groups: G1, H sires mated to H cows; G2, H sires mated to H, A and C cows; G3, A sires mated to A cows; G4, A sires mated to H, A and C cows; and G5, C sires mated to C cows. The interactions of genetic line by concentrate were significant (P < 0.05) for 56- to 112-d milk yield (MY112), corrected 56-to 112-d milk yield (CMY112) and feed efficiency (EFMY112 = MY112/TDN consumption). H and C cows produced more milk and were more efficient than A cows when fed high levels of concentrate. The H cattle possess a greater capacity to convert the concentrate into milk, while A cattle reach maximum milk production earlier than H cattle. The interactions of sire by concentrate were statistically significant for MY112, EFMY112 and CMY112 in G1 (P < 0.01), and G2 (P < 0.01). The breeding values of sires for MY112 were estimated using BLUP for all of the H line (BLUP-T), for half of the population consuming low amounts of concentrate (BLUP-L) and for the other half consuming high amounts (BLUP-H). A significant reranking of sires was found among the three groups. Key words: Genotype × environment interaction, milk production, efficiency, breeding value, dairy cattle


Author(s):  
Christopher Lu

Dairy has intertwined with human society since the beginning of civilization. It evolves from art in ancient society to science in the modern world. Its roles in nutrition and health are underscored by the continuous increase in global consumption. Milk production increased by almost 50% in just the past quarter century alone. Population growth, income rise, nutritional awareness, and science and technology advancement contributed to a continuous trend of increased milk production and consumption globally. With a fourfold increase in milk production per cow since the 1940s, the contemporary dairy industry produces more milk with fewer cows, and consumes less feed and water per liter of milk produced. The dairy sector is diversified, as people from a wider geographical distribution are consuming milk, from cattle to species such as buffalo, goat, sheep, and camel. The dairy industry continues to experience structural changes that impact society, economy, and environment. Organic dairy emerged in the 1990s as consumers increasingly began viewing it as an appropriate way of both farming and rural living. Animal welfare, environmental preservation, product safety, and health benefit are important considerations in consuming and producing organic dairy products. Large dairy operations have encountered many environmental issues related to elevated greenhouse gas emissions. Dairy cattle are second only to beef cattle as the largest livestock contributors in methane emission. Disparity in greenhouse gas emissions per dairy animal among geographical regions can be attributed to production efficiency. Although a number of scientific advancements have implications in the inhibition of methanogenesis, improvements in production efficiency through feeding, nutrition, genetic selection, and management remain promising for the mitigation of greenhouse gas emissions from dairy animals. This article describes the trends in milk production and consumption, the debates over the role of milk in human nutrition, the global outlook of organic dairy, the abatement of greenhouse gas emissions from dairy animals, as well as scientific and technological developments in nutrition, genetics, reproduction, and management in the dairy sector.


2011 ◽  
Vol 94 (2) ◽  
pp. 899-907 ◽  
Author(s):  
L. Holtshausen ◽  
Y.-H. Chung ◽  
H. Gerardo-Cuervo ◽  
M. Oba ◽  
K.A. Beauchemin

2014 ◽  
Vol 48 (3) ◽  
pp. 286 ◽  
Author(s):  
Krishanender Dinesh ◽  
Y.P. Thakur ◽  
S. Katoch ◽  
Varun Sankhyan

2020 ◽  
Author(s):  
Yao Xiao ◽  
Jason M. Kronenfeld ◽  
Benjamin J. Renquist

ABSTRACTWith a growing population, a reliable food supply is increasingly important. Heat stress reduces livestock meat and milk production. Genetic selection of high producing animals increases endogenous heat production, while climate change increases exogenous heat exposure. Both sources of heat exacerbate the risk of heat-induced depression of production. Rodents are valuable models to understand mechanisms conserved across species. Heat exposure suppresses feed intake across homeothermic species including rodents and production animal species. We assessed the response to early-mid lactation or late gestation heat exposure on milk production and mammary gland development/function, respectively. Using pair-fed controls we experimentally isolated the food intake dependent and independent effects of heat stress on mammary function and mass. Heat exposure (35°C, relative humidity 50%) decreased daily food intake. When heat exposure occurred during lactation, hypophagia accounted for approximately 50% of the heat stress induced hypogalactia. Heat exposure during middle to late gestation suppressed food intake, which was fully responsible for the lowered mammary gland weight of dams at parturition. However, the impaired mammary gland function in heat exposed dams measured by metabolic rate and lactogenesis could not be explained by depressed food consumption. In conclusion, mice recapitulate the depressed milk production and mammary gland development observed in dairy species while providing insight regarding the role of food intake. This opens the potential to apply genetic, experimental and pharmacological models unique to mice to identify the mechanism by which heat is limiting animal production.Summary StatementsThis study demonstrates that heat stress decreases lactation and mammary development through food intake dependent and independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document