scholarly journals Wear Mechanism and Failure of Carbide Cutting Tools with Nanostructured Multilayered Composite Coatings

Author(s):  
Alexey A. Vereschaka ◽  
Sergey N. Grigoriev ◽  
Nikolay N. Sitnikov ◽  
Gaik V. Oganyan
2016 ◽  
Vol 7 ◽  
pp. 184798041668080 ◽  
Author(s):  
Alexey A Vereschaka ◽  
Anatoly S Vereschaka ◽  
Andre DL Batako ◽  
Boris J Mokritskii ◽  
Anatoliy Y Aksenenko ◽  
...  

This article studies the specific features of cathode vacuum arc deposition of coatings used in the production of cutting tools. The detailed analysis of the major drawbacks of arc-Physical Vapour Deposition (PVD) methods has contributed to the development of the processes of filtered cathodic vacuum arc deposition to form nanoscale multilayered composite coatings of increased efficiency. This is achieved through the formation of nanostructure, increase in strength of adhesion of coating to substrate up to 20%, and reduction of such dangerous coating surface defects as macro- and microdroplets up to 80%. This article presents the results of the studies of various properties of developed nanoscale multilayered composite coating. The certification tests of carbide tool equipped with cutting inserts with developed nanoscale multilayered composite coating compositions in longitudinal turning (continuous cutting) and end symmetric milling, and intermittent cutting of steel C45 and hard-to-cut nickel alloy of NiCr20TiAl showed advantages of tool with nanoscale multilayered composite coating as compared to the tool without coating. The lifetime of the carbide inserts with developed NMCC based on the system of Ti–TiN–(NbZrTiCr)N (filtered cathodic vacuum arc deposition) was increased up to 5–6 times in comparison with the control tools without coatings and up to 1.5–2.0 times in comparison with nanoscale multilayered composite coating based on the system of Ti–TiN–(NbZrTiCr)N (standard arc-PVD technology).


2018 ◽  
Vol 19 (6) ◽  
pp. 606
Author(s):  
Alexey Vereschaka ◽  
Boris Mokritskii ◽  
Alexey Krapostin ◽  
Nikolay Sitnikov ◽  
Gaik Oganyan

This paper considers new avenues of improving the efficiency of machining hardened steels using damping devices and nanostructured multilayered composite coatings deposited on ceramic cutting tools with innovative arc-PVD processes with filtration of vapor-ion flow. A developed technology allows reducing peak stresses arising during cutting-in and providing improved reliability of ceramic tools. It is observed that the formation of modifying coatings on an edge ceramic tool in machining of hardened steels with HRC > 50 under the conditions of damping can reduce the coefficient of tool failure variation down to 0.3, and that improves the ability to predict failure of ceramic tools and allows recommending ceramic tools for the use in automated production.


Procedia CIRP ◽  
2014 ◽  
Vol 14 ◽  
pp. 239-244 ◽  
Author(s):  
A.A. Vereschaka ◽  
S.N. Grigoriev ◽  
A.S. Vereschaka ◽  
A.Yu. Popov ◽  
A.D. Batako

2014 ◽  
Vol 72 (1-4) ◽  
pp. 303-317 ◽  
Author(s):  
A. A. Vereshchaka ◽  
A. S. Vereshchaka ◽  
O. Mgaloblishvili ◽  
M. N. Morgan ◽  
A. D. Batako

2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012015
Author(s):  
M Sh Migranov ◽  
A M Migranov ◽  
S R Shekhtman

Abstract The paper presents the results of a study of one of the ways to increase the wear resistance of “duplex” coatings applied to cutting tools, which are due to preliminary diffusion saturation of the tool surface with nitrogen (known as ion nitriding) followed by physical deposition of a hard coating (Ti, Cr) N. The proposed coating also contains an additional layer with an impurity of ions, deposited on a preliminary nitrided surface of high speed steel before the deposition of a hard coating. Tests were carried out to evaluate the effect of these modified layers on the tool life of the HSS tool. The greatest wear resistance after "triplex" - treatment was achieved during ion implantation of titanium into a pre-nitrided surface. The coefficient of friction of the modified layer was studied at different contact temperatures. Ionic mixing contributes to the appearance of a thin surface layer with an amorphous-like structure, which prolongs the stage of normal wear, which significantly increases the tool life as a result of the self-organization process.


2019 ◽  
Vol 1378 ◽  
pp. 042052
Author(s):  
O. P Abioye ◽  
G. P Gaiya ◽  
O. S. I Fayomi ◽  
C. A Loto ◽  
A. J Musa

2018 ◽  
Vol 44 (13) ◽  
pp. 15495-15502 ◽  
Author(s):  
Da-Wang Tan ◽  
Wei-Ming Guo ◽  
Hong-Jian Wang ◽  
Hua-Tay Lin ◽  
Cheng-Yong Wang

2018 ◽  
Vol 279 ◽  
pp. 60-66
Author(s):  
Da Shan Bai ◽  
Jian Fei Sun ◽  
Kai Wang ◽  
Wu Yi Chen

In this paper, fine-grain WC/Co tools were utilized in dry turning of the Ti-6Al-4V alloy. The wear modes of the cutting tools at different cutting speeds were analyzed. The diffusion behavior between the cutting tool and the workpiece was studied in detail based on the Auger electron spectroscopy (AES) depth profile technology. The diffusion wear mechanism was revealed. The results showed that the diffusion layer formed at the interface between the cutting tool and the adhering material. The diffusion ability of C was the strongest, followed by W, the weakest was Co in all the elements of the cutting tool. The chemical reactions took place close to the adhering material, forming the reaction layer. As a diffusion barrier, it was possible to limit the elements diffusion from the cutting tool to the adhering material, decrease the changes in the cutting tool composition and damages. The diffusion layer, which was weakened by diffusion, was worn off and taken away by the fast flowing chip during the cutting process, causing the diffusion wear characterized by a smooth crater formation on the tool surface.


2016 ◽  
Vol 23 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Ergün Ekici ◽  
Mahmut Gülesin

AbstractIn this study, the effects of the particle reinforcement ratio on cutting forces and surface roughness were investigated when milling particle-reinforced metal matrix composite (MMCp) produced by hot pressing with different cutting tools. Alumix 123 alloy as the matrix material and B4C particles with an average size of 27 μm and 5%, 10% and 15% ratio as reinforcing elements were used for the manufacture of composite materials. The experiments were carried out in dry cutting conditions with four different cutting speeds, constant feed rate and depth of cut. Changes depending on the increased reinforcement ratio in cutting forces and surface roughness values were investigated; the effects of 10% B4C reinforced composite on tool wear were also examined. It was observed that cutting forces increased with the increase in cutting speed and particle ratio with carbide cutting tools, and it was seen that the cutting forces on the cutting tools decreased when cutting speed decreased and the cutting forces increased as the reinforcement ratios increased. In addition, with increasing the cutting speed, the surface roughness of the machined surfaces of composite samples increased with the carbide tools, while the cubic boron nitride (CBN) tools have the opposite effect. While it was seen that flank and crater wear occurred on the cemented carbide cutting tools, abrasive, adhesive and other wear mechanism tools in addition to the main wear mechanism, no remarkable flank and crater wear occurred on CBN cutting tools.


Sign in / Sign up

Export Citation Format

Share Document