scholarly journals Mechanically Improved and Multifunctional CFRP Enabled by Resins with High Concentrations Epoxy-Functionalized Fluorographene Fillers

2021 ◽  
Author(s):  
Junhua Wei

To meet the maximum potential of the mechanical properties of carbon fiber reinforced plastics (CFRP), stress transfer between the carbon fibers through the polymer matrix must be improved. A recent promising approach reportedly used reinforcing particles as fillers dispersed in the resin. Carbon based fillers are an excellent candidate for such reinforcing particles due to their intrinsically high mechanical properties, structure and chemical nature similar to carbon fiber and high aspect ratio. They have shown great potential in increasing the strength, elastic modulus and other mechanical properties of interest of CFRPs. However, a percolation threshold of ~1% of the carbon-based particle concentration in the base resin has generally been reported, beyond which the mechanical properties deteriorate due to particle agglomeration. As a result, the potential for further increase of the mechanical properties of CFRPs with carbon-based fillers is limited. We report a significant increase in the strength and elastic modulus of CFRPs, achieved with a novel reinforced thermoset resin that contains high loadings of epoxy-reacted fluorographene (ERFG) fillers. We found that the improvement in mechanical performance of CFRPs was correlated with increase in ERFG loading in the resin. Using a novel thermoset resin containing 10 wt% ERFG filler, CFRPs fabricated by wet layup technique with twill weaves showed a 19.6% and 17.7% increase in the elastic modulus and tensile strength respectively. In addition, because of graphene’s high thermal conductivity and high aspect ratio, the novel resin enhanced CFRPs possessed 59.3% higher through-plane thermal conductivity and an 81-fold reduction in the hydrogen permeability. The results of this study demonstrate that high loadings of functionalized particles dispersed in the resin is a viable path towards fabrication of improved, high-performance CFRP parts and systems.

2013 ◽  
Vol 377 (19-20) ◽  
pp. 1358-1361 ◽  
Author(s):  
Hasan Babaei ◽  
Pawel Keblinski ◽  
J.M. Khodadadi

CrystEngComm ◽  
2019 ◽  
Vol 21 (38) ◽  
pp. 5738-5748 ◽  
Author(s):  
François S. Hallac ◽  
Ioannis S. Fragkopoulos ◽  
Simon D. Connell ◽  
Frans L. Muller

This work describes a new method to measure breakage strength and elastic modulus of single crystal cantilevers using atomic force microscopy.


2021 ◽  
Author(s):  
Yaxiong Zhang ◽  
Erqing Xie

Carbon nanotubes (CNTs) have been widely studied as supercapacitor electrodes because of their excellent conductivity, high aspect ratio, excellent mechanical properties, chemical stability, and large specific surface area. However, the...


2021 ◽  
Vol 36 (4) ◽  
pp. 417-422
Author(s):  
Y. Hamid ◽  
P. Svoboda

Abstract Ethylene-butene copolymer (EBC)/carbon-fiber (CF) composites can be utilized as an electromechanical material due to their ability to change electric resistance with mechanical strain. The electro-mechanical properties and thermal conductivity of ethylene butene copolymer (EBC) composites with carbon fibers were studied. Carbon fibers were introduced to EBC with various concentrations (5 to 25 wt%). The results showed that carbon fibers’ addition to EBC improves the electric conductivity up to 10 times. Increasing the load up to 2.9 MPa will raise the electric resistance change by 4 500% for a 25% fiber sample. It is also noted that the EBC/CF composites’ electric resistance underwent a dramatic increase in raising the strain. For example, the resistance change was around 13 times higher at 15% strain compared to 5% strain. The thermal conductivity tests showed that the addition of carbon fibers increases the thermal conductivity by 40%, from 0.19 to 0.27 Wm–1K–1.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Eiyad Abu-Nada

Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra≥104, the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra=103, the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra=103, the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios ≤0.4. For Ra≥104, the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra=103. For Ra≥104, the Maxwell–Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra=103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra≥104, where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra=103.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3092 ◽  
Author(s):  
Eunbi Lee ◽  
Chi Hyeong Cho ◽  
Sae Hoon Hwang ◽  
Min-Geun Kim ◽  
Jeong Woo Han ◽  
...  

A carbon fiber-reinforced polymer (CFRP) is a light and rigid composite applicable in various fields, such as in aviation and automobile industry. However, due to its low thermal conductivity, it does not dissipate heat sufficiently and thus accumulates heat stress. Here, we reported a facile and effective strategy to improve the through-thickness thermal conductivity of CFRP composites by using a layer-by-layer coating of inorganic crystals. They could provide efficient heat transfer pathways through layer-by-layer contact within the resulting composite material. The high thermally conductive CFRP composites were prepared by employing three types of inorganic crystal fillers composed of aluminum, magnesium, and copper on prepreg through the layer-by-layer coating process. The vertical thermal conductivity of pure CFRP was increased by up to 87% on using magnesium filler at a very low content of 0.01 wt %. It was also confirmed that the higher the thermal conductivity enhancement was, the better were the mechanical properties. Thus, we could demonstrate that the layer-by-layer inclusion of inorganic crystals can lead to improved through-thickness thermal conductivity and mechanical properties of composites, which might find applications in varied industrial fields.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5670
Author(s):  
Piera Alvarez ◽  
M. Ángeles Montealegre ◽  
Francisco Cordovilla ◽  
Ángel García-Beltrán ◽  
Ignacio Angulo ◽  
...  

The effect of process parameters and the orientation of the cladding layer on the mechanical properties of 316L stainless steel components manufactured by laser metal deposition (LMD) was investigated. High aspect-ratio walls were manufactured with layers of a 4.5 mm wide single-cladding track to study the microstructure and mechanical properties along the length and the height of the wall. Samples for the tensile test (according to ASTM E-8M-04) were machined from the wall along both the direction of the layers and the direction perpendicular to them. Cross-sections of the LMD samples were analyzed by optical and scanning electron microscopy (SEM). The orientation of the growing grain was observed. It was associated with the thermal gradient through the building part. A homogeneous microstructure between consecutive layers and some degree of microporosity was observed by SEM. Uniaxial tension tests were performed on samples extracted from the wall in perpendicular and parallel directions. Results for ultimate tensile strength were similar in both cases and with the wrought material. The σ0.2 were similar in both cases but slightly superior to the wrought material.


Sign in / Sign up

Export Citation Format

Share Document