scholarly journals Stored Grain Pests and Current Advances for their Management

2021 ◽  
Author(s):  
Rayees Ahmad ◽  
Shafiya Hassan ◽  
Showkat Ahmad ◽  
Syed Nighat ◽  
Yendrambamb K. Devi ◽  
...  

During the offseason, when fresh food is not available, humans have to consume stored grain food. Unfortunately, these stored grains are later infested with many pests. Foods stored in bags and bins are very much susceptible to infestation with several pests which can cause extensive post-harvest losses, spoilage, and less demand in markets, causing a huge economic crisis. Hence, successful management of stored grain pests becomes necessary to prevent these from insect pests. Current approaches for their management are one of the promising goals, as it includes preventive practices, monitoring, sanitation, and identification of main pathogens. Different management strategies of all the common stored grain pests viz. grain weevils, grain borers, grain moths, flour moths, mealworms, grain and flour beetles, booklice, mites, and parasites are enlisted here.

2019 ◽  
Vol 47 (1) ◽  
pp. 1-11
Author(s):  
Abu Faiz Md Aslam ◽  
Sharmin Sultana ◽  
Faria Farhana Rain ◽  
Sumita Rani Das ◽  
Ayesha Siddika ◽  
...  

Stored grain pests are discovered in food as immature stages, which further complicates the identification process. A DNA barcode dataset of some important pests that can be used for easy and confirm identification in stages of life is constructed. COI genes of three stored grain insect pests i.e,, Sitophilus oryzae, Callosobruchus chinensis and Oryzaephilus surinamensis were sequenced. The sequenced genes were submitted to NCBI GenBank and obtained accession numbers MG967331.1, MG967332.1, MG967333.1 and MK041216.1. BLAST analysis showed 99 to 100% homology with existing GenBank sequences. The nucleotide composition analysis revealed that the value of A+T (64.8%) is greater than G+C (35.2%). Genetic distance among four sequences of three store pests were ranged from 0.00293-0.32807. Phylogenetic analysis showed that these three species are originated from different clades. Haplotype analysis of mitochondrial COI gene of the stored grain insect pests showed high genetic diversity among them. C. chinensis, O. surinamensis and S. oryzae were separated from their common ancestor by 80, 73 and 64 mutational steps. These information may be helpful for attempting any successful control measures against the pest species. In conclusion, present author established the first DNA barcode dataset of three store grain pests and confirmed its efficiency for identifying these pests. Bangladesh J. Zool. 47(1): 1-11, 2019


2021 ◽  
Author(s):  
Marid Tadesse ◽  
Md Jamshed Ali

Abstract This study was designed to assess major insects and occurrence of rodent infestation in stored grain in two districts of south western Ethiopia. Omo Neda and Bako Tibe districts were purposively selected supported their potential growing of maize and sorghum grain, and high postharvest losses in these selected areas. A total of 160 farmers’ stores from both districts were randomly selected. The grain samples used in the present study were stored for 5 different time periods, ranging from 1 to 5 months and from the same farmers’ stores, to identify storage insect pest and to determine grain weight loss and insect damage. The results showed that the dominant insect species in maize and sorghum grains were weevils (Sitophilus spp.) followed by the Angoumois gelechiid (Sitotroga cerealella Olivier) and flour beetles (Tribolium spp.). High numbers of insects were recorded from both plastered and un-plastered gombisa and polypropylene bags. Additionally, the amount of every insect pest in each storage container recorded per 100 g grain increased because the duration of grain storage increased. There have been 0.33–1.29 and 0.44-1g droppings per 100-g sample of maize and sorghum grain, respectively. Grain damage showed significant differences over the storage periods across the study districts. A similar trend was observed for weight loss for each of the grains in all districts. These results indicated that farmers are incurring a substantial grain loss to insects and rodent pests. Hence, there is an urgent need to devise appropriate tactics for protecting the losses in farm-stored maize and sorghum in Ethiopia.


Author(s):  
G. Harish ◽  
A Naganagoud ◽  
A G Sreenivas ◽  
Somashekhar . ◽  
Sharangouda Hiregoudar ◽  
...  

Biodiversity of stored grain insects is often neglected as many of the workers think that it has limited or no diversity as consumer tolerance towards insect pests in stored grains is zero. Survey was conducted in six districts of Hyderabad-Karnataka region to find out the diversity and insects infesting major stored pulses during 2014-15. Callasobruchus analis L., C. maculates F., C. chinensis L. and T. castaneum H. were insect pests observed in collected pulse samples. Dinarmus basalis R., D. vagabundus T.,Dinarmus sp. and Uscana sp. were the hymenopteran parasitoids on pulse beetle collected from the samples. Rank abundance showed that C. analis was dominant species found on stored pulses.


2021 ◽  
Vol 12 (6) ◽  
pp. 679-686
Author(s):  
Tumma Mounika ◽  
◽  
S. K. Sahoo ◽  
D. Chakraborty ◽  
◽  
...  

A study was carried out to evaluate the bio-efficacy of some botanicals against Callosobruchus chinensis L. in stored chickpea (Variety: Anuradha) in the year 2018–20. Different botanicals like Neem (Azadirachta indica), Melia (Melia azedarach), Datura (Datura stramonium) and Tulsi (Ocimum sanctum) were used. Among all the botanicals Neem leaf powder @ 6% performed better with minimum egg laying (64 eggs 5 females-1) compared to the other botanicals except the standard check with Deltamethrin @ 0.04%. Thereafter, 6% Melia leaf powder and 8% Datura leaf powder recorded 87.50 eggs 5 females-1 and 91.25 eggs 5 females-1, respectively. With regard to adult mortality, the best result was also obtained from the treatment Neem leaf powder @6% with 96.67% mortality in 5th day. Following the same trend, 6% Melia leaf powder and 8% Datura leaf powder exhibited 90% and 83.33% adult mortality, respectively, in 5th day. The estimation of total phenols and total antioxidants (IC-50) contents in Neem leaf powder (345.69 mg g-1 and 207.77 μg ml-1), Melia leaf powder (273.40 mg g-1 and 383.68 μg ml-1) and Datura Leaf Powder (213.62 mg g-1 and 405.77 μg ml-1) also confirms the findings of the bio-efficacy trial of the botanicals. Tulsi leaf powder @5% was least efficacious both in terms of egg laying by the females as well as adult mortality. These botanicals are locally available, economic, bio-degradable and safe to the environment. Therefore, they may be fitted in the Integrated Pest Management strategies against stored grain pests as seed protectants.


1949 ◽  
Vol 40 (2) ◽  
pp. 299-304 ◽  
Author(s):  
M. Maqsud Nasir

A review of the work carried out on mercury as a preservative against stored grain pests is given.The influence of the duration of exposure to mercury vapour upon eggs of different stages of development is discussed.Temperature and humidity within ordinary limits do not affect the efficiency of mercury.Under airtight conditions this preservative is effective within a radius of three feet in receptables with or without grain.Paper strips coated with mercury cannot be recommended for grain stored in bags and kept in piles because pressure and weight of the grain, or even shaking, will cause the mercury to be expelled from the strips.Mercury dispersed in chalk cannot be used for grain destined for consumption. It is, however, quite suitable for preserving grain for seed.Plastering the walls with mercury paste or afflxing slabs to the walls of godowns is not effective owing to the limited range of mercury vapour.Application of mercury in various types of receptacles is discussed and advocated. Fumigation with mercury does not seem to be practicable.


2021 ◽  
Author(s):  
Marid Tadesse ◽  
Md Jamshed Ali

Abstract This study was designed to assess major insects and occurrence of rodent infestation in stored grain in two districts of south western Ethiopia. Omo Neda and Bako Tibe districts were purposively selected supported their potential growing of maize and sorghum grain, and high postharvest losses in these selected areas. A total of 160 farmers’ stores from both districts were randomly selected. The grain samples used in the present study were stored for 5 different time periods, ranging from 1 to 5 months and from the same farmers’ stores, to identify storage insect pest and to determine grain weight loss and insect damage. The results showed that the dominant insect species in maize and sorghum grains were weevils (Sitophilus spp.) followed by the Angoumois gelechiid (Sitotroga cerealella Olivier) and flour beetles (Tribolium spp.). High numbers of insects were recorded from both plastered and un-plastered gombisa and polypropylene bags. Additionally, the amount of every insect pest in each storage container recorded per 100 g grain increased because the duration of grain storage increased. There have been 0.33–1.29 and 0.44-1g droppings per 100-g sample of maize and sorghum grain, respectively. Grain damage showed significant differences over the storage periods across the study districts. A similar trend was observed for weight loss for each of the grains in all districts. These results indicated that farmers are incurring a substantial grain loss to insects and rodent pests. Hence, there is an urgent need to devise appropriate tactics for protecting the losses in farm-stored maize and sorghum in Ethiopia.


Author(s):  
И.А. Уткина ◽  
В.В. Рубцов

Ранняя (Quercus robur var. praecox Czern.) и поздняя (Q. robur var. tardiflora Czern.) фенологические формы дуба черешчатого, выделенные в самостоятельные таксоны в середине XIX в., неоднократно становились объектами исследований для специалистов разного профиля. Собрано немало данных о различиях в их росте, требованиях к условиям местообитания, устойчивости к неблагоприятным внешним факторам. Иногда кроме ранней и поздней феноформ выделяют еще и промежуточные между ними. Наиболее отчетливо различия между феноформами, обусловленные разными сроками листораспускания, проявляются в реакции на поздние весенние заморозки и повреждение листвы насекомыми-филлофагами. Так как на деревьях поздней формы листовые и цветочные почки раскрываются намного позже, чем на ранней, поздняя форма избегает повреждения весенними заморозками. Кроме того, обладая меньшей способностью к формированию летних побегов, она меньше повреждается и ранними осенними заморозками, а также зимними морозами, что способствует образованию у нее более прямых и полнодревесных стволов, по сравнению с ранней формой. Ранняя форма чаще и сильнее повреждается филлофагами ранневесеннего комплекса, у которых отрождение гусениц из яиц синхронизировано с раскрытием почек и распусканием листьев. Есть данные, что видовой состав вредителей листвы на деревьях ранней и поздней форм дуба при их совместном произрастании примерно одинаков, зато численность отдельных видов филлофагов и их соотношение различны. На деревьях ранней формы их больше в несколько раз, что объясняется совпадением фаз развития большинства ранневесенних видов филлофагов и листвы этой формы дуба. Согласно результатам проведенных исследований, поздняя форма предпочтительнее для создания лесных культур дуба как более устойчивая к неблагоприятным погодным условиям и насекомым-вредителям. Early (Quercus robur var. praecox Czern.) and late (Q. robur var. tardiflora Czern.) phenological forms of the common oak, recognized as independent taxa in the mid-nineteenth century, have been subjects of multiple studies by specialists of different fields. Abundant data on the differences in their growth requirements, habitat conditions, and resistance to unfavorable external factors have been collected. Some specialists in addition to early and late phenoforms distinguish intermediate forms. Most clearly the differences between these forms appear in response to late spring frosts and damage of leaves by phyllophagous insects due to different timing of the forms' leafing. As leaf and flower buds in late oaks are revealed much later than in early oaks, late form avoids damage by spring frosts. In addition, due to lower ability to form summer shoots, late oaks are less damaged by early autumn frosts and winter freeze, which contributes to the formation of more straight and full trunks comparing to early oaks. Early oaks are damaged more severely by phyllophagous insects of spring complex, in which hatching of caterpillars from eggs is synchronized with opening buds and unfolding of leaves. There is evidence that species composition of foliage pests on co-occurant early and late forms of oak is nearly the same, but the number of individual species of phyllophagous insects and their ratio are different. In the early form the number of phyllophagous insects is greater by several fold due to concurrence of developmental phases in most early spring phyllophagous species and foliage of this oak form. The obtained results show that the late form of common oak is preferable for forest plantations as more resistant to unfavorable weather conditions and insect pests.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 522
Author(s):  
Régis Santos ◽  
Wendell Medeiros-Leal ◽  
Osman Crespo ◽  
Ana Novoa-Pabon ◽  
Mário Pinho

With the commercial fishery expansion to deeper waters, some vulnerable deep-sea species have been increasingly captured. To reduce the fishing impacts on these species, exploitation and management must be based on detailed and precise information about their biology. The common mora Mora moro has become the main deep-sea species caught by longliners in the Northeast Atlantic at depths between 600 and 1200 m. In the Azores, landings have more than doubled from the early 2000s to recent years. Despite its growing importance, its life history and population structure are poorly understood, and the current stock status has not been assessed. To better determine its distribution, biology, and long-term changes in abundance and size composition, this study analyzed a fishery-dependent and survey time series from the Azores. M. moro was found on mud and rock bottoms at depths below 300 m. A larger–deeper trend was observed, and females were larger and more abundant than males. The reproductive season took place from August to February. Abundance indices and mean sizes in the catch were marked by changes in fishing fleet operational behavior. M. moro is considered vulnerable to overfishing because it exhibits a long life span, a large size, slow growth, and a low natural mortality.


Sign in / Sign up

Export Citation Format

Share Document