scholarly journals Biological Control of Mycotoxigenic Fungi and Their Toxins: An Update for the Pre-Harvest Approach

Author(s):  
Mohamed F. Abdallah ◽  
Maarten Ameye ◽  
Sarah De Saeger ◽  
Kris Audenaert ◽  
Geert Haesaert
Author(s):  
Raffaello Castoria ◽  
Sandra A.I. Wright ◽  
Samir Droby

Author(s):  
Randa Hisham Zedan ◽  
Zahoor Ul-Hassan ◽  
Roda Al-Thani ◽  
Quirico Migheli ◽  
Samir Jaoua

Mycotoxins are secondary metabolites synthesized by mycotoxigenic fungi belonging mainly to three major fungal genera that are Aspergillus, Fusarium and Penicillium. The latter mycotoxigenic fungi contaminate plants and different food commodities and cause various health concerns (carcinogenicity, mutagenicity, nephrotoxicity, etc...) due to their corresponding mycotoxins. One of the most studied mycotoxins is ochratoxin A (OTA) owing to its toxicity level (classified in 2B group as possible human carcinogenic). To remediate the mycotoxins’ contamination, physical and chemical techniques can be proposed. However, the safest among all is the biological control approach. In this research, we have used the Qatari strain Burkholderia cepacia (QBC03) as a biological agent against mycotoxigenic fungi and the strain has possessed a wide antifungal spectrum against 21 species from different genera. Additionally, the antifungal activity of QBC03’s supernatant was explored on the fungal biomass and OTA synthesis of A. carbonarius in liquid media, and interestingly; both the biomass and OTA’s concentrations were massively reduced upon treatment. The effect of QBC03’s supernatant on the fungal spores’ germination was examined as well, and it was shown that the conidial germination was completely inhibited. Moreover, the supernatant of QBC03 has induced morphological alteration in the mycelia of the fungal strain. The thermal stability of the antifungal compounds in QBC03’s culture supernatant was investigated, and it was shown that metabolites of QBC03 were distinctively thermostable and they were still active even when heated at 100C. The findings of this research prove that Burkholderia cepacia strain QBC03 is an excellent candidate for the biological control of mycotoxigenic fungi and their mycotoxins particularly in local regions.


2019 ◽  
Vol 49 ◽  
pp. e1256 ◽  
Author(s):  
Jean-Michel Savoie ◽  
Gerardo Mata ◽  
Vessela Atanasova Penichon ◽  
Marie Foulonge-Oriol

Background: Biological control for cereal diseases caused by mycotoxigenic fungi is part of the alternative methods to be developed to secure food and feed production, recognizing the negative effects these fungi have on crop yield and their potential production of mycotoxins. Objective: Update recent knowledge about the potential of mushroom-forming fungi as biological control agents of mycotoxigenic fungi species, acting as antagonists on crop debris, as source of active extracts with antifungal and/or antimycotoxin properties and as detoxifying agents in solid-state fermentation processes of contaminated cereals. Methods: A literature review of the published works was carried out, the main topics were analyzed, as well as the species with the greatest potential of biological control agents of mycotoxingenic fungi. Results and conclusions: Mushroom forming fungi could be used as antagonists on crop debris or grains, as sources of active extracts with antifungal and/or antimycotoxin properties, and as detoxifying agents. An integration of these three potentials gives rise to an environment friendly process for production of both safe grains and edible mushrooms.


2012 ◽  
Vol 36 (5) ◽  
pp. 483-497 ◽  
Author(s):  
Flávio Henrique Vasconcelos de Medeiros ◽  
Samuel Julio Martins ◽  
Tiago Domingues Zucchi ◽  
Itamar Soares de Melo ◽  
Luis Roberto Batista ◽  
...  

Mycotoxins are produced by the secondary metabolism of many fungi and can be found in almost 25% of the world's agricultural commodities. These compounds are toxic to humans, animals, and plants and therefore, efforts should be made to avoid mycotoxin contamination in food and feed. Besides, up to 25% of all harvested fruits and vegetables are lost due to storage molds and/or mycotoxin contamination and many methods have been applied to mitigate these issues, but most of them rely on the use of fungicides. Although chemicals are often the first defensive line against mycotoxigenic fungi, the indiscriminate use of fungicides are awakening the public perception due to their noxious effects on the environment and human/animal health. Thus, there is an increasing public pressure for a safer and eco-friendly alternative to control these organisms. In this background, biological control using microbial antagonists such as bacteria, fungi and yeasts have been shown to be a feasible substitute to reduce the use of chemical compounds. Despite of the positive findings using the biocontrol agents only a few products have been registered and are commercially available to control mycotoxin-producing fungi. This review brings about the up-to-date biological control strategies to prevent or reduce harvested commodity damages caused by storage fungi and the contamination of food and feed by mycotoxins.


2020 ◽  
Vol 19 (2) ◽  
pp. 643-669
Author(s):  
Siti Nur Ezzati Yazid ◽  
Selamat Jinap ◽  
Siti Izera Ismail ◽  
Naresh Magan ◽  
Nik Iskandar Putra Samsudin

Author(s):  
Reem Moath Alasmar ◽  
Samir Jaoua

Mycotoxins, the secondary fungal metabolites are important contaminants of food and feed. Among the other contaminants, aflatoxin B1 (AFB1) and OTA are frequently detected in the animal feed product. In the present study, the mixed dairy cow feed products were collected from the supermarkets in Qatar and analyzed for the presence of AFB1 and OTA. Yeast strains were isolated and tested for their biological control activities against aflatoxigenic and ochratoxin fungi. We demonstrated that local 15 yeasts isolates have important antifungal potential activities through the synthesis of volatile organic compounds (VOC) that are able to act against the mycotoxigenic fungi and their synthesis of the mycotoxins. Two Yeast strains (4&2) isolated from fermented food, have shown a great antifungal inhibition growth in-vitro as well as spores inhibition and mycotoxins synthesis.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2007 ◽  
Author(s):  
Andrew E. Monroe ◽  
Corinne Zimmerman

EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document