scholarly journals Oxidative Stress and Vascular Diseases: Effect of Physical Exercise

Author(s):  
Aline de Freitas Brito ◽  
Caio Victor Coutinho de Oliveira ◽  
Glêbia Alexa Cardoso ◽  
Joana Marcela Sales de Lucena ◽  
Jordanna di Paula dos Santos Sousa ◽  
...  
2020 ◽  
Vol 19 (5) ◽  
pp. 336
Author(s):  
Luiza Minato Sagrillo ◽  
Viviane Nogueira De Zorzi ◽  
Luiz Fernando Freire Royes ◽  
Michele Rechia Fighera ◽  
Beatriz Da Silva Rosa Bonadiman ◽  
...  

Physical exercise has been shown to be an important modulator of the antioxidant system and neuroprotective in several diseases and treatments that affect the central nervous system. In this sense, the present study aimed to evaluate the effect of physical exercise in dynamic balance, motor coordination, exploratory locomotor activity and in the oxidative and immunological balance of rats treated with vincristine (VCR). For that, 40 adult rats were divided into two groups: exercise group (6 weeks of swimming, 1h/day, 5 days/week, with overload of 5% of body weight) and sedentary group. After training, rats were treated with 0.5 mg/kg of vincristine sulfate for two weeks or with the same dose of 0.9% NaCl. The behavioral tests were conducted 1 and 7 days after each dose of VCR. On day 15 we carried out the biochemical analyzes of the cerebellum. The physical exercise was able to protect against the loss of dynamic balance and motor coordination and, had effect per se in the exploratory locomotor activity, and neutralize oxidative stress, damage DNA and immune damage caused by VCR up to 15 days after the end of the training protocol. In conclusion, we observed that previous physical training protects of the damage motor induced by vincristine.Key-words: exercise, oxidative stress, neuroprotection, cerebellum.


2021 ◽  
pp. 111562
Author(s):  
Marcelo Paes de Barros ◽  
André Luís Lacerda Bachi ◽  
Juliana de Melo Batista dos Santos ◽  
Rafael Herling Lambertucci ◽  
Rafael Ishihara ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Daniel N Meijles ◽  
Imad Al Ghouleh ◽  
Sanghamitra Sahoo ◽  
Jefferson H Amaral ◽  
Heather Knupp ◽  
...  

Organismal aging represents an independent risk factor underlying many vascular diseases, including systemic and pulmonary hypertension, and atherosclerosis. While the mechanisms driving aging are largely elusive, a steady persistent increase in tissue oxidative stress has been associated with senescence. Previously we showed TSP1 elicits NADPH oxidase (Nox)-dependent vascular smooth muscle cell oxidative stress. However mechanisms by which TSP1 affects endothelial redox biology are unknown. Here, we tested the hypothesis that TSP1 induces endothelial oxidative stress-linked senescence in aging. Using rapid autopsy disease-free human pulmonary (PA) artery, we identified a significant positive correlation between age, protein levels of TSP1, Nox1 and the cell-cycle repressor p21cip (p<0.05). Age also positively associated with increased Amplex Red-detected PA hydrogen peroxide levels (p<0.05). Moreover, treatment of human PA endothelial cells (HPAEC) with TSP1 (2.2nM; 24h) increased expression (~1.9 fold; p<0.05) and activation of Nox1 (~1.7 fold; p<0.05) compared to control, as assessed by Western blot and SOD-inhibitable cytochrome c reduction. Western blotting and immunofluorescence showed a TSP1-mediated increase in p53 activation, indicative of the DNA damage response. Moreover, TSP1 significantly increased HPAEC senescence in a p53/p21cip/Rb-dependent manner, as assessed by immunofluorescent detection of subcellular localization and senescence-associated β-galactosidase staining. To explore this pathway in vivo, middle-aged (8-10 month) wild-type and TSP1-null mice were utilized. In the TSP1-null, reduced lung senescence, oxidative stress, Nox1 levels and p21cip expression were observed compared to wild-type supporting findings in human samples and cell experiments. Finally, prophylactic treatment with specific Nox1 inhibitor NoxA1ds (10μM) attenuated TSP1-induced HPAEC ROS, p53 activation, p21cip expression and senescence. Taken together, our results provide molecular insight into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence, with implications for molecular control of the aging process.


Author(s):  
Daniela Buonocore ◽  
Manuela Verri ◽  
Andrea Giolitto ◽  
Enrico Doria ◽  
Michele Ghitti ◽  
...  

Abstract Background Long-chain n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may alter oxidative status and immune function after exercise. The aim of this pilot study was to determine the probable association between n-3 supplementation and physical exercise, observing the variations in markers of oxidative stress and inflammation. Methods Thirty-nine subjects of both sexes aged 17–30 years were divided into two groups: 1) (n = 21) trained Athletes; 2) (n = 18) Sedentary subjects. All subjects were given about 4 g/day of n-3 supplementation, rich in EPA and DHA, for 8 weeks. Blood, saliva and urine samples were collected pre- (T0) and post- (T1) supplementation. Hematological parameters (tryglicerides, total cholesterol, HDL, CPK, LDH, HGH, IGF-1), oxidative markers (MDA, 8-OHdG, PCc), antioxidant parameters (GPx, SOD, CAT, DPPH scavenger), exercise-induced stress markers (testosterone and cortisol) and an inflammatory marker (TNF-α) were measured. All tests were two-sided and a p-value of less than 0.05 was considered as statistically significant. Results The results showed that MDA and TNF-αmean values significantly decreased after supplementation in both Athletes and Sedentary subjects: variation was greater in Athletes than in Sedentary control subjects. Generally, our results suggested that supplementation with n-3 PUFAs created a synergic variation in the parameters from a baseline state (T0) to a treated state after supplementation (T1), in terms of size and modality, which was significantly different in Athletes compared to Sedentary subjects. Conclusion In conclusion, supplementation with about 4 g/day of n-3 PUFAs, rich in EPA and DHA, for 8 weeks, seemed to be effective in counteracting some parameters involved in oxidative stress and inflammation, induced by acute strenuous physical exercise.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 529 ◽  
Author(s):  
Ricardo A. Pinho ◽  
Aderbal S. Aguiar ◽  
Zsolt Radák

This review highlighted resistance training as an important training type for the brain. Most studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects. However, recent studies have shown that resistance training can also significantly contribute to the prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery of brain activities through specific neurochemical adaptations induced by the training. In this scenario we observed the results of several studies published in different journals in the last 20 years, focusing on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms, oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other variables were not addressed in this review but should be considered for a complete understanding of the effects of training in the brain.


Sign in / Sign up

Export Citation Format

Share Document