scholarly journals Leading Edge Receptivity at Subsonic and Moderately Supersonic Mach Numbers

Author(s):  
Marvin E. Goldstein ◽  
Pierre Ricco
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Wanan Sheng ◽  
Roderick A. McD. Galbraith ◽  
Frank N. Coton

National Renewable Energy Laboratory, USA (NREL) airfoils have been specially developed for wind turbine applications, and projected to yield more annual energy without increasing the maximum power level. These airfoils are designed to have a limited maximum lift and relatively low sensitivity to leading-edge roughness. As a result, these airfoils have quite different leading-edge profiles from airfoils applied to helicopter blades, and thus, quite different dynamic-stall characteristics. Unfortunately for wind turbine aerodynamics, the dynamic-stall models in use are still those specially developed and refined for helicopter applications. A good example is the Leishman–Beddoes dynamic-stall model, which is one of the most popular models in wind turbine applications. The consequence is that the application of such dynamic-stall model to low-speed cases can be problematic. Recently, some specific dynamic-stall models have been proposed or tuned for the cases of low Mach numbers, but their universality needs further validation. This paper considers the application of the modified dynamic low-speed stall model of Sheng et al. (“A Modified Dynamic Stall Model for Low Mach Numbers,” 2008, ASME J. Sol. Energy Eng., 130(3), pp. 031013) to the NREL airfoils. The predictions are compared with the data of the NREL airfoils tested at the Ohio State University. The current research has two objectives: to justify the suitability of the low-speed dynamic-stall model, and to provide the relevant parameters for the NREL airfoils.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Barry J. Brown ◽  
...  

Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of these investigations have resulted in better understanding of the flow field in turbine passages. However, there is still insufficient data on the performance of turbine airfoils with high turning angles operating at varying incidence angles at transonic Mach numbers. The paper presents detailed aerodynamic measurements for three different turbine airfoils with similar turning angles but different aerodynamic shapes. Midspan total pressure loss, secondary flow field, and static pressure measurements on the airfoil surface in the cascades are presented and compared for the three different airfoil sets. The airfoils are designed for the same velocity triangles (inlet/exit gas angles and Mach number). Airfoil curvature and true chord are varied to change the loading vs. chord. The objective is to investigate the type of loading distribution and its effect on aerodynamic performance (pressure loss). Measurements are made at +10, 0 and −10 degree incidence angles for high turning turbine airfoils with ∼127 degree turning. The cascade exit Mach numbers were varied within a range from 0.6 to 1.1. In order to attain a ratio of inlet Mach number to exit Mach number that is representative to that encountered in a real engine, the exit span is increased relative to the inlet span. This results in one end wall diverging from inlet to exit at a 13 degree angle, which simulates the required leading edge loading as seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the flow characteristics of the airfoils under study.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Song Xue ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
...  

The paper presents detailed measurements of midspan total pressure loss, secondary flow field, static pressure measurements on airfoil surface at midspan, near hub and near the end walls in a transonic turbine airfoil cascade. Numerous low-speed experimental studies have been carried out to investigate the performance of turbine cascades. Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of the above investigations have resulted in better understanding of flow field in turbine passages. However, there is still insufficient data on the performance of turbine blades with high turning angles operating at varying incidences angles at transonic Mach numbers. In the present study, measurements were made at +10, 0 and −10 degree incidence angles for a high turning turbine airfoil with 127 degree turning. The exit Mach numbers were varied within a range from 0.6 to 1.1. Additionally, the exit span is increased relative to the inlet span resulting in one end wall diverging from inlet to exit at 13 degree angle. This was done in order to obtain a ratio of inlet Mach number to exit Mach number which is representative to that encountered in real engine and simulates the blade and near end wall loading that is seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the design and off-design flow characteristics of the airfoil under study. All aerodynamic measurements were compared with CFD analysis and a reasonably good match was observed.


2016 ◽  
Vol 793 ◽  
pp. 556-588 ◽  
Author(s):  
B. Lyu ◽  
M. Azarpeyvand ◽  
S. Sinayoko

A new analytical model is developed for the prediction of noise from serrated trailing edges. The model generalizes Amiet’s trailing-edge noise theory to sawtooth trailing edges, resulting in a complicated partial differential equation. The equation is then solved by means of a Fourier expansion technique combined with an iterative procedure. The solution is validated through comparison with the finite element method for a variety of serrations at different Mach numbers. The results obtained using the new model predict noise reduction of up to 10 dB at 90$^{\circ }$ above the trailing edge, which is more realistic than predictions based on Howe’s model and also more consistent with experimental observations. A thorough analytical and numerical analysis of the physical mechanism is carried out and suggests that the noise reduction due to serration originates primarily from interference effects near the trailing edge. A closer inspection of the proposed mathematical model has led to the development of two criteria for the effectiveness of the trailing-edge serrations, consistent but more general than those proposed by Howe. While experimental investigations often focus on noise reduction at 90$^{\circ }$ above the trailing edge, the new analytical model shows that the destructive interference scattering effects due to the serrations cause significant noise reduction at large polar angles, near the leading edge. It has also been observed that serrations can significantly change the directivity characteristics of the aerofoil at high frequencies and even lead to noise increase at high Mach numbers.


2018 ◽  
Vol 838 ◽  
pp. 435-477 ◽  
Author(s):  
M. E. Goldstein ◽  
Pierre Ricco

This paper uses matched asymptotic expansions to study the non-localized (which we refer to as global) boundary layer instabilities generated by free-stream acoustic and vortical disturbances at moderate supersonic Mach numbers. The vortical disturbances produce an unsteady boundary layer flow that develops into oblique instability waves with a viscous triple-deck structure in the downstream region. The acoustic disturbances (which for reasons given herein are assumed to have obliqueness angles that are close to a certain critical angle) generate slow boundary layer disturbances which eventually develop into oblique stable disturbances with an inviscid triple-deck structure in a region that lies downstream of the viscous triple-deck region. The paper shows that both the vortically generated instabilities and the acoustically generated oblique disturbances ultimately develop into modified Rayleigh-type instabilities (which can either grow or decay) further downstream.


Author(s):  
Irving Fruchtman

Fundamental concepts are given for the design of a turbine stage with supersonic gas velocities relative to the blading. Minimum-length nozzles (stators) and free-vortex-type rotor blades are specified and a correlation of their published performance is given. A blade selection chart is given to provide a method for obtaining appropriate low-loss rotor blade configurations. A series of two-dimensional cascade experiments are described in which the performance of film-cooled, blunted leading-edge rotor blades were measured. Blade performance is given over a range of inlet Mach numbers and cooling flows.


Author(s):  
L Tain ◽  
N. A. Cumpsty

The flow around the leading edge of a compressor blade is interesting and important because there is such a strong interaction between the viscous boundary layer flow and the inviscid flow around it. As the velocity of the inviscid flow just outside the boundary layer is increased from subsonic to supersonic, the type of viscous-inviscid interaction changes; this has important effects on the boundary layer downstream and thus on the performance of the aerofoil or blade. An investigation has been undertaken of the flow in the immediate vicinity of a simulated compressor blade leading edge for a range of inlet Mach numbers from 0.6 to 0.95. The two-dimensional aerofoil used has a circular leading edge on the front of a flat aerofoil. The incidence, Reynolds number and level of free-stream turbulence have been varied. Measurements include the static pressure around the leading edge and downstream and the boundary layer profile far enough downstream for the leading edge bubble to have reattached. Schlieren pictures were also obtained. The flow around the leading edge becomes supersonic when the inlet Mach number is 0.7 for the zero-incidence case; for an inlet Mach number of 0.95 the peak Mach number was approximately 1.7. The pattern of flow around the leading edge alters as the Mach number is increased, and at the highest Mach number tested here the laminar separation bubble is removed. Positive incidence, raised free-stream turbulence or increased Reynolds number at intermediate inlet Mach numbers tended to promote flow patterns similar to those seen at the highest inlet Mach number. Both increased free-stream turbulence and increased Reynolds number, for the same Mach number and incidence, produced thinner shear layers including a thinner boundary layer well downstream. The measurements were supported by calculations using the MSES code (the single aerofoil version of the MISES code); the calculations were helpful in interpreting the measured results and were demonstrated to be accurate enough to be used for design purposes.


Author(s):  
Shantanu Mhetras ◽  
Je-Chin Han ◽  
Ron Rudolph

The effect of film cooling holes placed along the span of a fully-cooled high pressure turbine blade in a stationary, linear cascade on film cooling effectiveness is studied using the Pressure Sensitive Paint (PSP) technique. Effect of showerhead injection at the leading edge and the presence of compound angled, diffusing holes on the pressure and suction side are also examined. Six rows of compound angled shaped film cooling holes are provided on the pressure side while four such rows are provided on the suction side of the blade. The holes have a laidback and fan-shaped diffusing cross-section. Another three rows of cylindrical holes are drilled at a typical angle on the leading edge to capture the effect of showerhead film coolant injection. The film cooling hole arrangement simulates a typical film cooled blade design used in stage 1 rotor blades for gas turbines used for power generation. A typical blowing ratio is defined for each film hole row and tests are performed for 100%, 150% and 200% of this typical value. Tests are performed for inlet Mach numbers of 0.36 and 0.45 with corresponding exit Mach numbers of 0.51 and 0.68 respectively. The flow remains subsonic in the throat region for both Mach numbers. The corresponding free stream Reynolds number, based on the axial chord length and the exit velocity, are 1.3 million and 1.74 million respectively. Freestream turbulence intensity level at the cascade inlet is 6%. Results show that varying blowing ratios can have a significant impact on film-cooling effectiveness distribution. Large spanwise variations in effectiveness distributions are also observed. Similar distributions were observed for both Mach numbers.


Sign in / Sign up

Export Citation Format

Share Document