scholarly journals The Principles behind Targeted Therapy for Cancer Treatment

Author(s):  
Wabel AL-Busairi ◽  
Maitham Khajah
2020 ◽  
Vol 20 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Keywan Mortezaee ◽  
Masoud Najafi ◽  
Bagher Farhood ◽  
Amirhossein Ahmadi ◽  
Dheyauldeen Shabeeb ◽  
...  

Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.


2020 ◽  
Author(s):  
Valerie M. Carlberg ◽  
Olivia M. T. Davies ◽  
Heather A. Brandling‐Bennett ◽  
Sarah E. S. Leary ◽  
Jennifer T. Huang ◽  
...  

2016 ◽  
Vol 160 ◽  
pp. 65-83 ◽  
Author(s):  
Navnath S. Gavande ◽  
Pamela S. VanderVere-Carozza ◽  
Hilary D. Hinshaw ◽  
Shadia I. Jalal ◽  
Catherine R. Sears ◽  
...  

2011 ◽  
Vol 29 (15_suppl) ◽  
pp. e16618-e16618 ◽  
Author(s):  
J. Subramanian ◽  
A. Vlahiotis ◽  
S. Frazee ◽  
K. Snider ◽  
S. Devarakonda ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Huiyu Xiao ◽  
Xiaojie Wang ◽  
Shuang Li ◽  
Ying Liu ◽  
Yijie Cui ◽  
...  

With the gradual prolongation of the overall survival of cancer patients, the cardiovascular toxicity associated with oncology drug therapy and radiotherapy has attracted increasing attention. At present, the main methods to identify early cancer treatment-related cardiac dysfunction (CTRCD) include imaging examination and blood biomarkers. In this review, we will summarize the research progress of subclinical CTRCD-related blood biomarkers in detail. At present, common tumor therapies that cause CTRCD include: (1) Chemotherapy—The CTRCD induced by chemotherapy drugs represented by anthracycline showed a dose-dependent characteristic and most of the myocardial damage is irreversible. (2) Targeted therapy—Cardiovascular injury caused by molecular-targeted therapy drugs such as trastuzumab can be partially or completely alleviated via timely intervention. (3) Immunotherapy—Patients developed severe left ventricular dysfunction who received immune checkpoint inhibitors have been reported. (4) Radiotherapy—CTRCD induced by radiotherapy has been shown to be significantly associated with cardiac radiation dose and radiation volume. Numerous reports have shown that elevated troponin and B-type natriuretic peptide after cancer treatment are significantly associated with heart failure and asymptomatic left ventricular dysfunction. In recent years, a few emerging subclinical CTRCD potential biomarkers have attracted attention. C-reactive protein and ST2 have been shown to be associated with CTRCD after chemotherapy and radiation. Galectin-3, myeloperoxidas, placental growth factor, growth differentiation factor 15 and microRNAs have potential value in predicting CTRCD. In this review, we will summarize CTRCD caused by various tumor therapies from the perspective of cardio-oncology, and focus on the latest research progress of subclinical CTRCD biomarkers.


2019 ◽  
Vol 131 ◽  
pp. 01022
Author(s):  
Feixuan Wu

Immunotherapy has become the main stream in cancer treatment nowadays. It includes T cell, NK cell targeted therapy, as well as antibody targeted therapy and its derivatives. Recently immune checkpoints blockade (ICB) has been developed, which are said to be a better method in treatment. The release of negative regulators of immune activation has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte–associated protein 4 (CTLA-4), the programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PDL-1) pathway or the lymphocyte-activated gene-3 (LAG-3) pathway, either alone or in combination. Improvement of treatment benefits from the research in molecular mechanisms of ICB. For example, mechanism of LAG-3 and its valid ligands is unclear, which leads to a misunderstanding that the antibody might be ineffective. After finding these results demonstrating that fibrinogen-like protein 1(FGL1) is an important functional ligand of LAG-3, it reveals the role of this LAG 3-FGL1 pathway in tumor immunity. Although there are some potential side effects, these therapies turn out to have lots of positive effects on most patients. Therefore, this review summarizes the latest advances, hoping that it may have a great contribution to the cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document