scholarly journals The Role of Physical Activity on Insulin Resistance-Associated Endothelial Dysfunction

Author(s):  
Shruti M. Gandhi ◽  
Eric S. Nylen ◽  
Sabyasachi Sen

Enhanced physical activity and cardiorespiratory fitness significantly impact morbidity and mortality across the spectrum of noncommunicative chronic illnesses experienced by modern lifestyles. Physical activity itself prompts an intricate interplay of physiological responses across vital organ systems including microvascular adaptations to optimize nutrient, oxygen, and hormone delivery, some of which involves insulin-mediated regulation. Insulin has been known to act on the vasculature in multiple ways by its effects on endothelium and skeletal muscle blood flow. This is important to understand as it has implications for conditions associated with insulin resistance (IR) such as obesity, metabolic syndrome, prediabetes, diabetes, and polycystic ovarian syndrome among others. These conditions are associated with increased morbidity and mortality contributed by endothelial dysfunction via increased atherosclerosis, hypertension, and increased free fatty acid levels. In this chapter, we will discuss the effects of insulin on the vasculature, IR on the endothelium, and lastly, what impact physical activity may have on such processes.

2003 ◽  
Vol 92 (4) ◽  
pp. 10-17 ◽  
Author(s):  
Willa A Hsueh ◽  
Manuel J Quiñones

Author(s):  
Rajashree Panigrahy ◽  
Bratati Singh ◽  
Tapan K. Pattnaik ◽  
Sanjukta Misra

Background: Ovarian androgen production can be promoted by insulin resistance which leads to reproductive abnormalities in Polycystic Ovarian Syndrome (PCOS). A wide variety of female tissues can synthesize and secrete Prostate Specific Antigen (PSA). Androgens may take part a significant role in PSA secretion in PCOS. As insulin resistance stimulates androgen production, the baseline value of PSA may decline by insulin sensitising agents in PCOS. Present study is an attempt to measure the function of PSA as a marker of androgen excess in PCOS and to assess the role of insulin sensitising agent metformin in altering PSA level in PCOS.Methods: The study was undertaken to assess the insulin resistance, testosterone and PSA level in 45 women diagnosed as PCOS and 45 healthy controls. Alteration of insulin resistance, serum testosterone and PSA levels by metformin was also analysed.Results: A significant increase in testosterone, PSA level and insulin resistance was observed in PCOS cases when compared with control (p<0.001). When metformin was given for 4 months, improvement in insulin resistance and testosterone level was found in cases, but PSA values observed no change. Correlation was not found linking insulin resistance with PSA level prior to and after therapy.Conclusions: Serum PSA level could be detected in high significant concentration in PCOS women. Various researches explain that insulin resistance and BMI may perhaps control serum PSA level, but our result demonstrate no effect of insulin sensitising agent on serum PSA value.


2015 ◽  
Vol 22 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Rodica Teodora Străchinariu

Abstract Endothelium, the inner layer of the vasculature, represents the interface between blood and organ systems and it is active in the process of contraction and relaxation of vascular smooth muscle and in functions like secretion of vasoactive substances. Endothelial dysfunction is an important cause of cardiovascular disease. The function of the endothelium can be assessed by invasive and noninvasive methods. Endothelial cells produce vasoactive substances like endothelium derived relaxing factor, prostacyclin, nitric oxide, and endothelium derived hyperpolarizing factor. Diabetes mellitus is associated with an increased risk of cardiovascular diseases. Hyperglycemia leads to cardiovascular damage through different pathways, including the polyol and hexosamine pathways, generation of advanced glycation end products, and activation of protein kinase C. Together with hyperglycemia induced mitochondrial dysfunction and endoplasmic reticulum stress, all these can promote the accumulation of reactive oxygen species. The oxidative stress induced by hyperglycemia promotes endothelial dysfunction with an important role in micro and macro vascular disease. Insulin-resistance could be independently predictive of cardiovascular disease. Life style modification and pharmacotherapy could possibly ameliorate the effect of insulin resistance


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Takehiko Kujiraoka ◽  
Yasushi Satoh ◽  
Makoto Ayaori ◽  
Yasunaga Shiraishi ◽  
Yuko Arai-Nakaya ◽  
...  

Background Insulin signaling comprises 2 major cascades, the IRS/PI3K/Akt and Ras/Raf/MEK/ERK pathways. Many studies on the tissue-specific effects of the former pathway had been conducted, however, the role of the latter cascade in tissue-specific insulin resistance had not been investigated. High glucose/fatty acid toxicity, inflammation and oxidative stress, all of which are associated with insulin resistance, can activate ERK. Liver plays a central role of metabolism and hepatosteatosis (HST) is associated with vascular diseases. The aim of this study is to elucidate the role of hepatic ERK2 in HST, metabolic remodeling and endothelial dysfunction. Methods Serum biomarkers of vascular complications in human were compared between subjects with and without HST diagnosed by echography for regular medical checkup. Next, we created liver-specific ERK2 knockout mice (LE2KO) and fed them with a high-fat/high-sucrose diet (HFHSD) for 20 weeks. The histological analysis, the expression of hepatic sarco/endoplasmic reticulum (ER) Ca 2+ -ATPase 2 (SERCA2) and glucose-tolerance/insulin-sensitivity (GT/IS) were tested. Vascular superoxide production and endothelial function were evaluated with dihydroethidium staining and isometric tension measurement of aorta. Results The presence of HST significantly increased HOMA-IR, an indicator of insulin resistance or atherosclerotic index in human. HFHSD-fed LE2KO revealed a marked exacerbation in HST and metabolic remodeling represented by the impairment of GT/IS, elevated serum free fatty acid and hyperhomocysteinemia without changes in body weight, blood pressure and serum cholesterol/triglyceride levels. In the HFHSD-fed LE2KO, mRNA and protein expressions of hepatic SERCA2 were significantly decreased, which resulted in hepatic ER stress. Induction of vascular superoxide production and remarkable endothelial dysfunction were also observed in them. Conclusions Hepatic ERK2 revealed the suppression of hepatic ER stress and HST in vivo , which resulted in protection from vascular oxidative stress and endothelial dysfunction. HST with hepatic ER stress can be a prominent risk of vascular complications by metabolic remodeling and oxidative stress in obese-related diseases.


2015 ◽  
Vol 172 (16) ◽  
pp. 4012-4023 ◽  
Author(s):  
Divya Sri Priyanka Tallapragada ◽  
Pinakin Arun Karpe ◽  
Kulbhushan Tikoo

2014 ◽  
Vol 44 ◽  
pp. 787-791 ◽  
Author(s):  
Mine YAVUZ TAŞLIPINAR ◽  
Nedret KILIÇ ◽  
Nilüfer BAYRAKTAR ◽  
İsmail GÜLER ◽  
Yasemin GÜLCAN KURT ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sirilaksana Kunjara ◽  
Patricia McLean ◽  
Laurens Rademacher ◽  
Thomas W. Rademacher ◽  
Fabiana Fascilla ◽  
...  

Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease.


2013 ◽  
Vol 14 (4) ◽  
pp. 249-258 ◽  
Author(s):  
David Jiménez-Pavón ◽  
Jonatan R Ruiz ◽  
Francisco B Ortega ◽  
David Martínez-Gómez ◽  
Sara Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document