Trajectory Tracking Using Adaptive Fractional PID Control of Biped Robots with Time-Delay Feedback

Author(s):  
Joel Perez Padron ◽  
Jose P. Perez ◽  
C.F. Mendez-Barrios ◽  
V. Ramírez-Rivera
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Difei Liu ◽  
Zhiyong Tang ◽  
Zhongcai Pei

A novel variable structure compensation PID control, VSCPID in short, is proposed for trajectory tracking of asymmetrical hydraulic cylinder systems. This new control method improves the system robustness by adding a variable structure compensation term to the conventional PID control. The variable structure term is designed according to sliding mode control method and therefore could compensate the disturbance and uncertainty. Meanwhile, the proposed control method avoids the requirements for exact knowledge of the systems associated with equivalent control value in SMC that means the controller is simple and easy to design. The stability analysis of this approach is conducted with Lyapunov function, and the global stability condition applied to choose control parameters is provided. Simulation results show the VSCPID control can achieve good tracking performances and high robustness compared with the other control methods under the uncertainties and varying load conditions.


2021 ◽  
pp. 107754632110531
Author(s):  
Abbas-Ali Zamani ◽  
Sadegh Etedali

The application of the fractional-order PID (FOPID) controller is recently becoming a topic of research interest for vibration control of structures. Some researchers have successfully implemented the FOPID controller in a single-input single-output (SISO) control structural system subjected to earthquake excitations. However, there is a lack of research that focuses on its application in multi-input multi-output (MIMO) control systems to implement it in seismic-excited structures. In this case, the cross-coupling of the process channels in the MIMO control structural system may result in a complex design process of controllers so that each loop is independently designed. From an operational point of view, the time delay and saturation limit of the actuators are other challenges that significantly affect the performance and robustness of the controller so that ignoring them in the design process may lead to unrealistic results. According to the challenges, the present study proposed an optimal fractional-order PID control design approach for structural control systems subjected to earthquake excitation. Gases Brownian motion optimization (GBMO) algorithm is utilized for optimal tuning of the controller parameters. Considering six real earthquakes and seven performance indices, the performance of the proposed controller, implemented on a ten-story building equipped with an active tendon system (ATS), is compared with those provided by the classical PID controller. Simulation results indicate that the proposed FOPID controller is more efficient than the PID in both terms of seismic performance and robustness against time-delay effects. The proposed FOPID controller can maintain suitable seismic performance in small time delays, while a significant performance loss is observed for the PID controller.


Author(s):  
Xiaoyan Cheng ◽  
Hongbin Wang ◽  
Qinzhao Wang ◽  
Shaochan Feng

A rapid iterative learning control algorithm with variable forgetting factor is applied for a class of nonlinear system with initial error and time-delay. This algorithm eliminats the limitation that the initial state should be reset to the expected one or fixed value at the start of iteration in the learning process of conventional algorithms. The error and the differences between two adjacent error is adopted to correct the controller avoiding the unstable influence of the derivative for PD type algorithm and the available information is fully used to increase convergence rate. Furthermore variable forgetting factor introduced guaranteed a fast convergence of trajectory tracking error Then, with applying the rapid algorithm to the trajectory tracking control of manipulator, the learning speed and tracking performance are both greatly improved. Meanwhile, the control strategy is proposed for the limitation of each joint rotation. The convergence of the method is also proved theoretically. Finally, simulation results illustrates the effectiveness and the real-time ability of the proposed way.


2011 ◽  
Vol 317-319 ◽  
pp. 1444-1451
Author(s):  
Hai Bo Xie ◽  
Xiao Ming Duan ◽  
Hua Yong Yang ◽  
Zhi Bin Liu

Hydraulic thrust system is a critical part of shield tunneling machine. Automatic trajectory tracking control is a significant task of thrust system during tunnel excavation. In this article, plane mechanical structure diagram of the thrust system and path planning method are illustrated at first. An integrated control system is proposed to achieve the automatic control of the thrust trajectory. The control system consists of one trajectory planning controller for both cylinders and an individual cylinder controller for each of hydraulic cylinders. Trajectory planning controller is used to generate respective displacement signals of double-cylinder in every thrust stroke and each of cylinder controllers is used to realize the precise control of the given thrust trajectory. Variable-gain PID control strategy applied to achieve the precise tracking control of thrust trajectory under several typical working conditions are done at last. The experimental results demonstrate that variable-gain PID control have good performances with short response time and small overshoot regardless of changes of working conditions.


Sign in / Sign up

Export Citation Format

Share Document