scholarly journals Ferroelectric Glass-Ceramic Systems for Energy Storage Applications

2020 ◽  
Author(s):  
Abdulkarim Ziedan Khalf

An overview of ferroelectric glass ceramics, some literature review and some of the important previous studies were focused in this chapter. Nanocrystalline glass–ceramics containing ferroelectric perovskite-structured phases have been included. All modified glasses having ferroelectric ceramics which prepared by different methods are discussed, that producing nanocrystalline glass–ceramics. Then particular tested to their use as dielectric energy storage materials. These materials exhibit promising dielectric properties, indicating good potential for high energy density capacitors as a result of their nanocrystalline microstructures. The results of the analysis are summarised in this chapter to provide an overview of the energy storage characteristics of the different materials produced during the study.

Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2492
Author(s):  
Xiujun Yue ◽  
Jessica Grzyb ◽  
Akaash Padmanabha ◽  
James H. Pikul

Hermetic packaging is critical to the function of many microscale energy storage and harvesting devices. State-of-the-art hermetic packaging strategies for energy technologies, however, are designed for macroscale devices and dramatically decrease the fraction of active materials when applied to micro-energy systems. We demonstrated a minimal volume hermetic packaging strategy for micro-energy systems that increased the volume of active energy storage materials by 2× and 5× compared to the best lab scale microbatteries and commercial pouch cells. The minimal volume design used metal current collectors as a multifunctional hermetic shell and laser-machined hot melt tape to provide a thin, robust hermetic seal between the current collectors with a stronger adhesion to metals than most commercial adhesives. We developed the packaging using commercially available equipment and materials, and demonstrated a strategy that could be applied to many kinds of micro-energy systems with custom shape configurations. This minimal, versatile packaging has the potential to improve the energy density of current micro-energy systems for applications ranging from biomedical devices to micro-robots.


2013 ◽  
Vol 785-786 ◽  
pp. 410-416
Author(s):  
David H. Wang ◽  
Scott P. Fillery ◽  
Michael F. Durstock ◽  
Li Ming Dai ◽  
Richard A. Vaia ◽  
...  

CP2 polyimide (prepd. from 6FDA and 1,3-bis (3-aminophenoxy) benzene) was blended with (1-50 wt.%) detonation nanodiamonds (DND, pristine, acetone-washed, and 4-(2,4,6-trimethylphenoxy) benzoic acid-functionalized), and the blends were evaluated as thin films for its potential utility in high-energy-density capacitors that would have stable dielectric properties over a wide temperature range (-55 to 300°C) and at frequencies up to or greater than 100 kHz. Both the dielectric storage and loss increased substantially with DND content. Surface functionalization (with the above benzoic acid derivative) significantly reduced the dielectric loss, while the use of acetone-washed DNDs had no effect on the dielectric loss. DND was also blended with CP2 via in-situ polymerization and found to have little effect on the dielectric properties.


2020 ◽  
Vol 8 (26) ◽  
pp. 8962-8970 ◽  
Author(s):  
Abdullah Jan ◽  
Hanxing Liu ◽  
Hua Hao ◽  
Zhonghua Yao ◽  
Minghe Cao ◽  
...  

Relaxor-ferroelectric ceramics capacitors have been in the front line of investigations aimed at optimizing energy density due to their high Pmax, suppressed Pr, and high BDS levels, attributed to their highly dynamic polar nano-regions.


2016 ◽  
Vol 4 (13) ◽  
pp. 4797-4807 ◽  
Author(s):  
Min Zhang ◽  
Lin Zhang ◽  
Meng Zhu ◽  
Yiguang Wang ◽  
Nanwen Li ◽  
...  

A new family of poly(4-methyl-1-pentene) ionomers with high energy density at a high breakdown strength, high charge-discharge energy efficiency and a very narrow breakdown distribution for energy storage in future capacitor devices.


2019 ◽  
Vol 48 (16) ◽  
pp. 4424-4465 ◽  
Author(s):  
Hang Luo ◽  
Xuefan Zhou ◽  
Christopher Ellingford ◽  
Yan Zhang ◽  
Sheng Chen ◽  
...  

A detailed overview on interface design and control in polymer based composite dielectrics for energy storage applications.


2014 ◽  
Vol 617 ◽  
pp. 418-422 ◽  
Author(s):  
Shuangxi Xue ◽  
Shaohui Liu ◽  
Wenqin Zhang ◽  
Jinwen Wang ◽  
Linjiang Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document