Nanodiamond/Polyimide High Temperature Dielectric Films for Energy Storage Applications

2013 ◽  
Vol 785-786 ◽  
pp. 410-416
Author(s):  
David H. Wang ◽  
Scott P. Fillery ◽  
Michael F. Durstock ◽  
Li Ming Dai ◽  
Richard A. Vaia ◽  
...  

CP2 polyimide (prepd. from 6FDA and 1,3-bis (3-aminophenoxy) benzene) was blended with (1-50 wt.%) detonation nanodiamonds (DND, pristine, acetone-washed, and 4-(2,4,6-trimethylphenoxy) benzoic acid-functionalized), and the blends were evaluated as thin films for its potential utility in high-energy-density capacitors that would have stable dielectric properties over a wide temperature range (-55 to 300°C) and at frequencies up to or greater than 100 kHz. Both the dielectric storage and loss increased substantially with DND content. Surface functionalization (with the above benzoic acid derivative) significantly reduced the dielectric loss, while the use of acetone-washed DNDs had no effect on the dielectric loss. DND was also blended with CP2 via in-situ polymerization and found to have little effect on the dielectric properties.

2016 ◽  
Vol 18 (35) ◽  
pp. 24270-24277 ◽  
Author(s):  
Mei-Yan Tse ◽  
Xianhua Wei ◽  
Jianhua Hao

Our work shows contributions to the high-performance dielectric properties, including a CP of up to 104–105 and a low dielectric loss down to 0.03 in (Er0.5Nb0.5)xTi1−xO2 materials with secondary phases.


2020 ◽  
Author(s):  
Abdulkarim Ziedan Khalf

An overview of ferroelectric glass ceramics, some literature review and some of the important previous studies were focused in this chapter. Nanocrystalline glass–ceramics containing ferroelectric perovskite-structured phases have been included. All modified glasses having ferroelectric ceramics which prepared by different methods are discussed, that producing nanocrystalline glass–ceramics. Then particular tested to their use as dielectric energy storage materials. These materials exhibit promising dielectric properties, indicating good potential for high energy density capacitors as a result of their nanocrystalline microstructures. The results of the analysis are summarised in this chapter to provide an overview of the energy storage characteristics of the different materials produced during the study.


Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


2021 ◽  
pp. 095400832199352
Author(s):  
Wei Deng ◽  
Guanguan Ren ◽  
Wenqi Wang ◽  
Weiwei Cui ◽  
Wenjun Luo

Polymer composites with high dielectric constant and thermal stability have shown great potential applications in the fields relating to the energy storage. Herein, core-shell structured polyimide@BaTiO3 (PI@BT) nanoparticles were fabricated via in-situ polymerization of poly(amic acid) (PAA) and the following thermal imidization, then utilized as fillers to prepare PI composites. Increased dielectric constant with suppressed dielectric loss, and enhanced energy density as well as heat resistance were simultaneously realized due to the presence of PI shell between BT nanoparticles and PI matrix. The dielectric constant of PI@BT/PI composites with 55 wt% fillers increased to 15.0 at 100 Hz, while the dielectric loss kept at low value of 0.0034, companied by a high energy density of 1.32 J·cm−3, which was 2.09 times higher than the pristine PI. Moreover, the temperature at 10 wt% weight loss reached 619°C, demonstrating the excellent thermostability of PI@BT/PI composites. In addition, PI@BT/PI composites exhibited improved breakdown strength and toughness as compared with the BT/PI composites due to the well dispersion of PI@BT nanofillers and the improved interfacial interactions between nanofillers and polymer matrix. These results provide useful information for the structural design of high-temperature dielectric materials.


Author(s):  
Mattewos Tefferi ◽  
Rui Ma ◽  
Greg Treich ◽  
Greg Sotzing ◽  
Ramamurthy Ramprasad ◽  
...  

2018 ◽  
Vol 11 (8) ◽  
pp. 2073-2077 ◽  
Author(s):  
Mohammad N. Banis ◽  
Hossein Yadegari ◽  
Qian Sun ◽  
Tom Regier ◽  
Teak Boyko ◽  
...  

Developing high energy density batteries, such as metal–air systems, requires a good understanding of their underlying electrochemical principles.


Author(s):  
Fu-Ming Wang ◽  
Endazenaw Bizuneh Chemere ◽  
Wen-Chen Chien ◽  
Chi-Liang Chen ◽  
Chun-Chuan Hsu ◽  
...  

2020 ◽  
Vol 49 (15) ◽  
pp. 4956-4966 ◽  
Author(s):  
Jingbo Li ◽  
Yu Liu ◽  
Wei Cao ◽  
Nan Chen

A rapid in situ method was employed to synthesize the β-Ni(OH)2@NF integrated electrode for a high performance ASC device.


Sign in / Sign up

Export Citation Format

Share Document