Solar Energy Assessment in Various Regions of Indian Sub-continent

2020 ◽  
Author(s):  
Johny Renoald Albert ◽  
Dishore Shunmugham Vanaja

The demand for sustainable energy has increased significantly over the years due to the rapid depletion of fossil fuels. The solar photovoltaic system has been the advantage of converting solar irradiation directly to electricity, and it is suitable for most of the regions. But in the case of solar energy conversion, the voltage evolved from the solar photovoltaic cells is not adequate to meet the energy demand. Therefore, the converters and inverters with energy storage systems are used to fulfill the energy demand. These conversion architectures create new challenges for effective management of the grid. Due to the evaluation of power generation, load in a particular region or area, let us simplify with the help of the duck curve. The study is focused on the energy auditing, assessment, and measurement of solar irradiation from PV system design software. This graphical representation is implemented with a typical electricity load pattern at any region.

Author(s):  
Karan Bhatia

Abstract: The need for sustainable methods of producing energy is growing now more than ever due to the increasing environmental concerns and the current climate crisis. By combining the existing pyrolysis setup available to us, with solar energy, we can help in reducing the carbon footprint of the setup. India is one of the largest agrarian economies and as a result produces vast amounts of biomass waste, which is disposed of by burning. This produces a lot of smoke which contributes to a thick hazy smog in northern India and has a serious impact on the health of its population. Research in the thermo-chemical conversion of biomass waste and polymer wastes has also gained momentum in recent years. Various methods have been developed to reduce agricultural biomass and plastic wastes, but the Pyrolysis process proves its effectiveness in reducing wastes as well as converting them into useful fuels. Pyrolysis is a relatively simple, inexpensive, and robust thermo-chemical technology for transforming biomass into bio‐oil, biochar, and syngas. In this report, we focused on how to make the pyrolysis process more efficient, eco-friendly, and cost-effective by combining it with a solar photovoltaic system. A Photovoltaic (PV) system also helps in decreasing the grid dependence and increasing the reliability of the pyrolysis setup. It is used in conjunction with lithium-ion batteries to provide the necessary power required to carry out the pyrolytic conversion. Thus, with this solution, we can effectively produce energy while getting rid of bulky organic and plastic waste. Keywords: Pyrolysis, Sustainable energy, Solar Energy, Renewable Energy, Solar Photovoltaic System, Lithium-ion batteries


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

The concept of Net-Zero Energy in building refers to a building which has an annual balance of energy flow at the utility meter of zero. The concept implies that the building may consume energy from an external provider at times in order to satisfy the building demands, but at other times it must produce enough on-site energy to compensate for this energy. The use of renewable energy technologies is implicit as the source of energy to compensate for any energy used from an external provider. Solar photovoltaic is a proved technology for achieving Net-Zero Energy building but economic factors has limited its broad use. The design stage of a solar photovoltaic project is critical to make a project feasible. In the design stage, the equipment sizing must be optimized in order to reduce the initial capital cost and, therefore, improve the economics of the project. For houses, which is the focus of this paper, a stand-alone solar photovoltaic system must supply the house energy demand at all times since it is not connected to the electric grid. As a means to size the system, data of solar energy availability must be used to ensure that the system will provide enough energy to satisfy the energy demand as well as provide energy to charge the batteries that will provide the energy required when the solar energy is not available. In this paper, a methodology to optimize the size of the photovoltaic array and the battery bank is proposed. The methodology accounts for Typical Meteorological Year data (TMY3) to ensure that the system, based on accepted statistical data, will be able to satisfy the energy demand at all times. An example that uses energy demand data obtained from the simulation of a house using the software EnergyGauge is used to illustrate the implementation of the methodology.


2021 ◽  
Vol 9 (07) ◽  
pp. 130-139
Author(s):  
Akash Kumar Singh ◽  
◽  
A.K. Pandey ◽  

This paper presents simulation and modeling with optimization and analysis in solar photovoltaic systems, as well as the role and potential of maximum power extraction with controller. Matrix calculations for grid inverters with data graphing, their functions, MPPT algorithm applications, user interface design for monitoring PV modules, and interaction with inverter and converter are all aided by simulations of renewable energy systems. It looks at how well they work on a single-phase grid with a PV system. Simulink model for solar energy conversion systems allows you to examine the performance of Photovoltaic cells, modules, arrays, Maximum Power Points and inverters. Controllers are being tracked when the environment and physical variables change. A distributed MPPT scheme, which allows adjustment of each DC-link voltage, may be adopted for PV systems to achieve maximum PV module usage and solar energy extraction. The pattern that has been developed allows for independent management of each DC-link voltage in order to track the MPP for each string of PV panels. For various operating circumstances, simulation results are provided.


2018 ◽  
Vol 7 (3.29) ◽  
pp. 253
Author(s):  
G Sreenivasa Reddy ◽  
T Bramhananda Reddy ◽  
M Vijaya Kumar

A solar photovoltaic panel or a solar PV module is a device, which is to be considered universality the basic constituent of a solar photovoltaic system and is a combination of series and parallel assembly of solar cells. The electrical performance of this solar photovoltaic module be contingent on different environmental situations like PV cells/module solar spectral (air mass), ambient temperature, solar irradiance, angle-of-incidence.With these dependent conditions, there will be a petite chance to operate at its maximum power point (MPP) Hence, a Perturb and Observe (P&O) MPP algorithm is employed which draws considerable power with the desired time response. In present work, the interfacing of Solar PV system with the utility grid system which is having 15kW based on the Voltage Oriented Control (VOC). The temperature of the individual photovoltaic cell and solar irradiation are to be considered as inputs for the simulation process, whereas the duty cycle of the DC-DC boost converter is an output of the P&O controller. Performance of this grid-connected PV system with VOC method is analyzed with the simulation results and %THD values of the voltage and current at coupling point is verified. The results show the superiority of VOC method and its high dynamic behavior under variable irradiation conditions.  


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2019 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Jama S. Adam ◽  
Adebayo A. Fashina

This work presents the design of a 100kVA hybrid solar power system for Gollis University’s administrative block, Hargeisa, Somaliland. Prior to the system design, a preliminary field work on the site was performed to essentially measure the power/energy consumption of Gollis university’s administrative block. The results from the site survey was then used to select the appropriate equipment and instrument required for the design. This was achieved by calculating the energy consumption and then sizing the solar panel, battery, inverter and charge controller. The battery back-up time analysis at full load was also carried out to determine the effectiveness of the inverter size chosen. The inverter system was modeled and simulated using the MATLAB/Simulink software package. The simulation was used to study the reliability of the size of inverter chosen for the design, since the failure of most photovoltaic systems is ascribed to inverter failures. The results from the MATLAB/Simulink simulation showed that the inverter selected for the hybrid PV system has the ability to maximize the power produced from the PV array, and to generate sinusoidal AC voltage with minimum output distortion. The results also revealed that the PV solar system can provide a back-up time of 47.47 hours. The implications of the results are then discussed before presenting the recommendations for future works.  


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Hussein Safwat Hasan ◽  
Humor Hwang

In the realm of technological market penetration of solar photovoltaiclouvers (PVL) addressing environmental difficulties and the industrialrevolution, a new avenue of renewable energy is introduced. Moreover,solar energy exploitation through building façades was addressedthrough motorized solar photovoltaic louvers (MPVL). On the otherhand, proponents exalted the benefits of MPVL overlooking the typicalanalyses. In this communication, we attempted to perform a thoroughindustrial system evaluation of the MPVL. This communication presentsa methodology to validate the industrial claims about MPVL devices andtheir economic efficiency and the insight on how geographical locationinfluences their utilization and augment their potential benefits. This taskis carried out by evaluating the extent of solar energy that can be harvestedusing solar photovoltaic system (PVSYST) software and investigatingwhether existing product claims are associated with MPVL are feasible indifferent locations. The performance and operational losses (temperature,internal network, power electronics) were evaluated. To design and assessthe performance of different configurations based on the geographicalanalogy, simulation tools were successfully carried out based on differenttopographical locations. Based on these findings, various factors affect theemployment of MPVL such as geographical and weather conditions, solarirradiation, and installation efficiency. tt is assumed that we successfullyshed light and provided insights into the complexity associated withMPVL.


2018 ◽  
Vol 225 ◽  
pp. 04004
Author(s):  
Tan Dei Han ◽  
Mohamad Rosman M. Razif ◽  
Shaharin A. Sulaiman

Solar photovoltaic (PV) systems has the potential of supplying infinite electricity from renewable energy to rural areas around Malaysia. Various preterm failures happening frequently on the system lead to its drop in efficiency and breakdown. Lack of studies on the system in Malaysia hinders the development in terms of operation and maintenance. There is no proper documentation relevant to the premature failure of the system in Malaysia. The main objective of this project is to study the nature of premature failure of stand-alone solar photovoltaic system in Malaysia in order to improve the operation and maintenance of the system. The present study would provide reference for proper planning on operation and maintenance of the PV system. The study was conducted base on expert’s input and extensive literature survey. FMEA method and ISM approach are applied to analyze the data collected. Poor cooling system have the highest risk priority number. Poor workmanship is the least depending factor for premature failure to happen thus requires most attention. Highest driving force of premature failure is poor monitoring and maintenance. More focus should be given to these premature failure during the planning for operation and maintenance due to its severity and impact.


TECCIENCIA ◽  
2021 ◽  
Vol 16 (31) ◽  
pp. 15-28
Author(s):  
Asad A. Naqvi ◽  
Talha Bin Nadeem ◽  
Ahsan Ahmed ◽  
Asad Ali Zaidi

Off-grid Photovoltaic (PV) system along with battery storage is very effective solution for electrification in remote areas. However, battery capacity selection is the most challenging task in system designing. In this study, an off-grid PV system along with battery storage is designed for the remote area of Karachi, Pakistan. The system is designed by considering the maximum energy requirement in summer season. The battery storage is selected to fulfill the energy demand during the night and cloudy seasons. On the basis of load, a total of 6 kW system is required to fulfill the energy demand. For such system, 925 Ah of battery is required to meet the energy requirement for a day in absence of solar irradiation. A regression-based correlation between battery capacity and energy demand is prepared for suitable battery sizing using Minitab. An economic analysis of the project is also carried out from which a net present value and simple payback are determined as USD 10,348 and 3 years, respectively. The environmental benefits are also been determined. It is found that the system will reduce around 7.32 tons of CO2 per annum which corresponds to the 183.69 tons of CO2 not produced in the entire project life.


Author(s):  
Pushpendra Arya

In today’s world we are going towards the major share of renewable energy to reduce the effect Green House Gases (GHG) in the atmosphere. The limitation of energy sources which produces clean energy, the rise in the pollution in the environment, and programs initiated by the Indian Government have encouraged lots of open field researches on Solar Photovoltaic Systems or Solar Energy Systems. As producing the clean and renewable energy is main component of energy sector, solar photovoltaic could be considered as an alternative in various regions. Although Solar Photovoltaic does have different advantages and can be used for various purposes, but also there are several challenges for it. This paper took a whole overview of the advantages and uses of Solar Photovoltaic and barriers in their adaptation/opportunities.


Sign in / Sign up

Export Citation Format

Share Document