scholarly journals Using Ontologies in Autonomous Robots Engineering

2021 ◽  
Author(s):  
Esther Aguado ◽  
Ricardo Sanz

The construction and operation of autonomous robots is heavily based of systemic conceptualizations of the reality constituted by the robot, its controller and the environment where it performs. In this chapter we address the role that computer ontologies play in the whole life cycle—engineering and operation—of autonomous robots: from its conception and construction by human engineering teams to deployment and autonomous operation in dynamic and uncertain environments. This chapter summarizes the state of the art, gives some examples and establishes a roadmap for future activity in this domain to produce shareable ontologies that could streamline autonomous robot development and exploitation.

2021 ◽  
Vol 13 (22) ◽  
pp. 12747
Author(s):  
Fabiana Tornese ◽  
Maria Grazia Gnoni ◽  
Brian K. Thorn ◽  
Andres L. Carrano ◽  
Jennifer A. Pazour

Pallets are among the most used returnable transport items (RTIs), and they are critical assets for a supply chain as they have significant environmental and economic impacts during their whole life cycle. Differently from other packaging products, pallets are specifically designed to be repeatably repaired and reinjected for use. While this environmentally is beneficial as it reduces waste, it can create complex interactions between the stakeholder-involved manufacturers, pallet providers, users and recyclers. Further, the number of different actors is usually high, and the flow of materials among them needs to be coordinated. In addition, different business models can be implemented (such as internal management versus outsourcing) as well as logistics alternatives (closed- versus open-loop). Thus, the aims of this study are first to propose a systematization of design and management decisions regarding the pallet supply chain; next, to review the state of the art models and tools adopted to support each decision process relying on an analysis of the archival literature published between 1978 and 2021 on pallet management, to summarize the main decision problems addressed by the different stakeholders involved in the pallet life cycle and the adopted methods, and, finally, to highlight potential existing research gaps. This effort helps to outline potential contributions towards more sustainable pallet supply chains and can support pallet operators and companies in evaluating solutions to increase the economic and environmental sustainability of their pallet management. Results show that the perspectives of the pallet provider and of the supply chain are the most widely addressed in the existing literature, while those of pallet manufacturers and repairers should be further analyzed.


Procedia CIRP ◽  
2016 ◽  
Vol 48 ◽  
pp. 73-78 ◽  
Author(s):  
P. Peças ◽  
U. Götze ◽  
E. Henriques ◽  
I. Ribeiro ◽  
A. Schmidt ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 6284-6287
Author(s):  
Xiao Dong Han ◽  
Ting Luo

The Whole Life Cycle Engineering Costing Management is an effective method to minimize the cost of an engineering project for the whole life, including the construction period, the operation period and the removal period. In this paper, we divided the Engineering Cost into three parts of labor costs, material costs and machinery costs. We have built a River-influx Model to calculate the social discount rate for the future, based on historical data and using MATLAB software to fit curves. We can then calculate the whole Life Cycle Engineering Cost for the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinghua Dai ◽  
Xiaoqiang Ren ◽  
Peng Wu ◽  
Xiangdong Wang ◽  
Jiang Li ◽  
...  

Abstract Background This study aims to explore the information chain management model of large instrument and equipment inter-working in the operating room (OR) led by information nurses. Methods Through the chain management process of large instruments and equipment in the OR, which was based on information nurses, the management model of inter-working and integrating information chain was established, the key links were controlled, and the whole life cycle management of instruments and equipment from expected procurement to scrapping treatment was realized. Using the cluster sampling method, 1562 surgical patients were selected. Among these patients, 749 patients were assigned to the control group before the running mode, and 813 patients were assigned to the observation group after the running mode. The related indexes for large instrument and equipment management in the department before and after the running mode were compared. Results In the observation group, the average time of equipment registration was (22.05 ± 2.36), the cost was reduced by 2220 yuan/year, and the satisfaction rate of the nursing staff was 97.62%. These were significantly better, when compared to the control group (P < 0.05). Furthermore, the awareness rate of the whole staff for equipment repair application was 95.12%, and the arrival time of maintenance personnel and the examination and approval time of equipment management were greatly shortened (P < 0.05). Conclusion The integrated management model of large instrument and equipment interworking in the OR based on chain flow realizes the whole life cycle management of instruments and equipment, which is essential to improve management efficiency.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 571-576 ◽  
Author(s):  
Tomohiko Sakao ◽  
Peter Funk ◽  
Johannes Matschewsky ◽  
Marcus Bengtsson ◽  
Mobyen Uddin Ahmed

2021 ◽  
Vol 13 (15) ◽  
pp. 8427
Author(s):  
Bahareh Nikmehr ◽  
M. Reza Hosseini ◽  
Jun Wang ◽  
Nicholas Chileshe ◽  
Raufdeen Rameezdeen

This article provides a picture of the latest developments in providing BIM-based tools for construction and demolition waste (CDW) management. The coverage and breadth of the literature on offering BIM-based tools and technologies for dealing with CDW throughout the whole life cycle of construction are investigated, and gaps are identified. Findings reveal that, although various BIM-based technologies are closely associated with CDW, much of the existing research on this area has focused on the design and construction phase; indeed, the problem of CDW in post-construction stages has received scant attention. Besides, the now available tools and technologies are lacking in cross-phase insights into project waste aspects and are weak in theoretical rigor. This article contributes to the field by identifying the intellectual deficiencies in offering BIM-based tools and technologies when dealing with CDW. So, too, it points to major priorities for future research on the topic. For practitioners, the study provides a point of reference and raises awareness in the field about the most advanced available BIM-based technologies for dealing with CDW problems.


1995 ◽  
Vol 117 (B) ◽  
pp. 42-47 ◽  
Author(s):  
K. Ishii

Life-cycle engineering seeks to incorporate various product life-cycle values into the early stages of design. These values include functional performance, manufacturability, serviceability, and environmental impact. We start with a survey of life-cycle engineering research focusing on methodologies and tools. Further, the paper addresses critical research issues in life-cycle design tools: design representation and measures for life-cycle evaluation. The paper describes our design representation scheme based on a semantic network that is effective for evaluating the structural layout. Evaluation measures for serviceability and recyclability illustrate the practical use of these representation schemes.


2021 ◽  
Vol 61 (S3) ◽  
pp. 24-25
Author(s):  
Rowena Duckstein ◽  
Felipe Cerdas ◽  
Alexander Leiden

Sign in / Sign up

Export Citation Format

Share Document