scholarly journals Persistant Organic Pollutants in Soil and Its Phytoremediation

2021 ◽  
Author(s):  
Mahima Begum ◽  
Bhaswati Sarmah ◽  
Gayatri Goswami Kandali ◽  
Sontara Kalita ◽  
Ipsita Ojha ◽  
...  

Persistent organic pollutants (POPs) of soil mainly exhibit toxic characteristics that posses hazard to whole mankind. These toxic pollutants includes several group of compound viz., polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. They can also be complex mixture of organic chemicals, heavy metals and microbes from septic systems, animal wastes and other sources of organic inputs. Phytoremediation is an emerging technology which can be used for remediation of soil from organic pollutants. In this chapter an attempt has been made to discuss about the sources of organic pollutants, factors that influenced the uptake of organic pollutants by plants, the different mechanism responsible for organic pollutants, phytoremediation of organic pollutants and their advantages and limitation.

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2188
Author(s):  
Wei Li ◽  
Xiaofeng Wang ◽  
Lixiang Shi ◽  
Xianyuan Du ◽  
Zhansheng Wang

The soil pollution of polycyclic aromatic hydrocarbons (PAHs) is serious in China, which not only affects the living and growing environment of plants and animals but also has a great impact on people’s health. The use of hydrophobic organic compounds to make use of surfactant ectopic elution processing is more convenient and cheaper as a repair scheme and can effectively wash out the polycyclic aromatic hydrocarbons in the soil. Therefore, we mixed sophorolipids:sodium dodecylbenzene sulfonate (SDBS):Na2SiO3 according to the mass ratio of 1:15:150. We explored the influencing factors of high and low concentrations of PAH-contaminated soil using a single factor test and four factors at a two-level factorial design. Then, the elution wastewater was treated by ultrasonic oxidation technology and the alkali-activated sodium persulfate technology. The results showed that: (1) In the single factor test, when the elution time is 8 h, the concentration of the compounded surfactant is 1200 mg/L, the particle size is 60 mesh, the concentration of NaCl is 100 mmol/L, and the concentration of KCl is 50 mmol/L, and the effect of the PAH-contaminated soil eluted by the composite surfactant is the best. Externally added NaCl and KCl salt ions have a more obvious promotion effect on the polycyclic aromatic hydrocarbon-contaminated soil; (2) in the interaction experiment, single factor B (elution time) and D (NaCl concentration) have a significant main effect. There is also a certain interaction between factor A (concentration agent concentration) and factor D, factor B, and factor C (KCl concentration); (3) the treatment of anthracene in the eluate by ultrasonic completely mineralizes the organic pollutants by the thermal and chemical effects produced by the ultrasonic cavitation phenomenon, so that the organic pollutants in the eluate are oxidized and degraded into simple environmentally friendly small molecular substances. When the optimal ultrasonic time is 60 min and the ratio of oxidant to activator is 1:2, the removal rate of contaminants in the eluent can reach 63.7%. At the same time, the turbidity of the eluent is significantly lower than that of the liquid after centrifugal separation, indicating that oxidants can not only remove the pollutants in elution water but also remove the residual soil particulate matter; and (4) by comparing the infrared spectrum of the eluted waste liquid before and after oxidation, it can be seen that during the oxidation process, the inner part of eluent waste liquid underwent a ring-opening reaction, and the ring-opening reaction also occurred in the part of the cyclic ester group of the surfactant, which changed from a ring to non-ring.


2020 ◽  
Author(s):  
Pengcheng Chen ◽  
Shadi Fatayer ◽  
Bruno Schuler ◽  
Jordan N. Metz ◽  
Leo Gross ◽  
...  

The initial thermal reactions of aromatic hydrocarbons are relevant to many industrial applications. However, tracking the growing number of heavy polycyclic aromatic hydrocarbon (PAH) products is extremely challenging because many reactions are unfolding in parallel from a mixture of molecules. Herein, we studied the reactions of 2,7-dimethylpyrene (DMPY) to decipher the roles of methyl substituents during mild thermal treatment. We found that the presence of methyl substituents is key for reducing the thermal severity required to initiate chemical reactions in natural molecular mixtures. A complex mixture of thermal products including monomers, dimers, and trimers were characterized by NMR, mass spectrometry and non-contact atomic force microscopy (nc-AFM). A wide range of structural transformations including methyl transfer and polymerization reactions were identified. A detailed mechanistic understanding was obtained on the roles of H radicals during the polymerization of polycyclic aromatic hydrocarbons.


Author(s):  
Laura DOBOS ◽  
Carmen PUIA

Crude oil is a highly complex mixture of hydrocarbons amounting to hundreds of individual compounds with different chemical structure and molecular weight plus a series of lower molecular weight compounds other than hydrocarbons (phenols, thiols, naphthenic acids, heterocyclic compounds with N (pyridines, pyrrole, indole, s.o.) compounds S (alkyl thiols, thiophene, etc.) (Zarnea, 1994). Mineral oil and polycyclic aromatic hydrocarbons (PAHs) creates larger environmental problems. They are considered particularly dangerous. In this regard, EPA Agency from U.S.A. includes a number of polycyclic aromatic hydrocarbons under 16 priority pollutants, which require special attention. IARC (International Agency for Research on Cancer) has identified 15 types of polycyclic aromatic hydrocarbons including six of the 16 types of PAHs, identifiable by the USEPA as having carcinogenic properties (Chauhan Archana et al., 2008).


Author(s):  
Jian-Hua Yan ◽  
Sheng-Yong Lu ◽  
Yue-Ling Gu ◽  
Xu-Guang Jiang ◽  
Xiao-Dong Li ◽  
...  

Complex components, high moisture and low caloric value of raw Chinese MSW (Municipal Solid Waste) lead to the difficulties of keeping stable burning and low pollutant emission. Differential Density Circulated Fluidized Bed (DDCFB) incinerator was first developed by Zhejiang University to overcome such difficulties. The research of organic pollutants, especially dioxins and polycyclic aromatic hydrocarbons emission and control from MSW incinerators has been carried out in ITPE since 1998. The aim of this paper is to provide the scheme of a new co-firing CFB incineration technology, and useful data for environmental evaluation of trace organic pollutants emission from incinerators. The art of co-firing CFB is presented briefly in the first part of this paper. The dioxin content in original Chinese MSW is estimated to be 10 pg I-TEQ/g based on the data from Abad et al. Several test runs are conducted in a real-scale (150ton/day) incinerator co-firing MSW and coal to investigate dioxins and polycyclic aromatic hydrocarbons emission to ambient air. Test results show that dioxins input into the incinerator is estimated around 300∼600 mg I-TEQ/y, dioxins output is estimated 3∼100 mg I-TEQ/y, and dioxins emitted to ambient air is around 0.1∼15mg I-TEQ/y. It seemed that most of dioxins in original waste are decomposed by incineration process. For seventeen priority PAHs, its emission to ambient air is around 200∼4160g/y for co-firing runs, which is much more than 80g/y for coal combustion only. This suggests that PAHs emission to ambient air needed to be more concerned than dioxins. That is to say, PAHs emission regulatory should be proposed as soon as possible to restrict all incinerators. Several new incinerators (200 tons/day per unit and 300 tons/day per unit) were built by using new Co-firing CFB technology in past few years. From the environmental evaluation report, dioxins emission in stack gas is in range of 0.0025∼0.06 ng I-TEQ/Nm3, which seemed far below the European limit. The annual dioxin emission to air for 200ton/day or 300 t/d units is around 3∼6 mg I-TEQ. It shows that co-firing CFB incinerator is capable of reducing dioxin emission effectively. Based on industrial demonstration experience of new co-firing CFB incineration technology, it has been proven environmental friendly method for thermal treatment of MSW in developing countries. Some reasons for low dioxin emission of co-firing processes are discussed in this paper.


2018 ◽  
Vol 7 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Zubairu Darma Umar ◽  
Nor Azwady Abd ◽  
Syaizwan Zahmir Zulkifli ◽  
Muskhazli Mustafa

Polycyclic aromatic hydrocarbons (PAHs) comprised of many dangerous organic pollutants which affect human cell. The choice of phenanthrene and pyrene as model substrates was based on their classification among the most hazardous PAHs group by the US EPA where they belonged to low and high molecular weights PAHs respectively. Biodegradation of these PAHs is the best strategy that completely removes such pollutants in an environmentally friendly manner. However, the bacteria involved are challenged degradation difficulties as a result of PAHs inhibitory effects to the organisms. This research is aimed at formulating phenanthrene and pyrene degrading consortium that effectively perform best even in complex mixture with hazardous heavy metals. Different bacteria consortia were formulated using the compatibility testing and mathematical permutation approach and the best consortium selected. This selected consortium was then subjected to the degradation of both phenanthrene and pyrene separately in a combined mixture with the selected heavy metals from the inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Consortium composition of C. sakazakii MM045 (2%, v/v) and Enterobacter sp. MM087 (2%, v/v) were found to be much effective during phenanthrene (500 mg/L) and pyrene (250 mg/L) degradation. This consortium also resisted more than 6 mg/L each of Nickel (Ni), Cadmium (Cd), Vanadium (V) and Lead (Pb) in such complex degradation which was found to be more than the concentration in the natural habitat the consortium exists prior to isolation. Such performance makes the selected consortium to be an extremely efficient tool for the PAHs degradation application as many biodegradation agents were reported to be less effective when significant concentration of Ni, Cd, V and Pb are present.


Sign in / Sign up

Export Citation Format

Share Document