Immunocytochemical study for hepatocyte nuclear factor 4^|^alpha; (HNF4^|^alpha;) in body cavity fluids

2014 ◽  
Vol 53 (3) ◽  
pp. 176-181
Author(s):  
Mika SUGAI ◽  
Makoto NAITO ◽  
Kanae TAKAHASHI ◽  
Chikashi IKEGAME ◽  
Chiaki SAKASHITA ◽  
...  
2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Riyadh Saif-Ali ◽  
Roslan Harun ◽  
S Al-Jassabi ◽  
Wan Zurinah Wan Ngah

This study aimed to investigate the associations of hepatocyte nuclear factor 4 (HNF4) alpha single nucleotide polymorphisms (SNPs) and haplotype with insulin resistance and metabolic syndrome parameters. Nine SNPs spanning the HNF4 alpha P2 promoter (rs4810424, rs1884613 and rs1884614) and coding region (rs2144908, rs6031551, rs6031552, rs1885088, rs1028583 and rs3818247) were genotyped in 160 subjects without diabetes or metabolic syndrome. The HNF4 alpha P2 promoter SNPs rs4810424, rs1884613 and rs1884614 were associated with insulin resistance (p = 0.017; 0.037; 0.024) and body mass index (BMI) (p = 0.03; 0.035; 0.039). The intron 1D SNP rs2144908 was associated with high-density lipoprotein cholesterol (HDLc) (p = 0.020) and the intron 9 SNP rs3818247 showed association with systolic (p = 0.02) and diastolic (p = 0.034) blood pressure. HNF4 alpha common haplotype CCCGTC associated with higher insulin resistance (p = 0.022), fasting blood glucose (FBG) (p = 0.035) and lower HDLc (p = 0.001). In conclusion, subjects with HNF4 alpha P2 variants and haplotypes have been shown to have a higher insulin resistance and are therefore at a higher risk for developing type 2 diabetes mellitus.


1996 ◽  
Vol 16 (3) ◽  
pp. 925-931 ◽  
Author(s):  
T Drewes ◽  
S Senkel ◽  
B Holewa ◽  
G U Ryffel

Hepatocyte nuclear factor 4 (HNF4) was first identified as a DNA binding activity in rat liver nuclear extracts. Protein purification had then led to the cDNA cloning of rat HNF4, which was found to be an orphan member of the nuclear receptor superfamily. Binding sites for this factor were identified in many tissue-specifically expressed genes, and the protein was found to be essential for early embryonic development in the mouse. We have now isolated cDNAs encoding the human homolog of the rat and mouse HNF4 splice variant HNF4 alpha 2, as well as a previously unknown splice variant of this protein, which we called HNF alpha 4. More importantly, we also cloned a novel HNF4 subtype (HNF4 gamma) derived from a different gene and showed that the genes encoding HNF 4 alpha and HNF4 gamma are located on human chromosomes 20 and 8, respectively. Northern (RNA) blot analysis revealed that HNF4 GAMMA is expressed in the kidney, pancreas, small intestine, testis, and colon but not in the liver, while HNF4 alpha RNA was found in all of these tissues. By cotransfection experiments in C2 and HeLa cells, we showed that HNF4 gamma is significantly less active than HNF4 alpha 2 and that the novel HNF4 alpha splice variant HNF4 alpha 4 has no detectable transactivation potential. Therefore, the differential expression of distinct HNF4 proteins may play a key role in the differential transcriptional regulation of HNF4-dependent genes.


Diabetologia ◽  
1997 ◽  
Vol 40 (7) ◽  
pp. 859-862 ◽  
Author(s):  
M. P. Bulman ◽  
M. J. Dronsfield ◽  
T. Frayling ◽  
M. Appleton ◽  
S. C. Bain ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


Sign in / Sign up

Export Citation Format

Share Document