scholarly journals Tectonophysical approach to the analysis of geological and geophysical data on gas-condensate deposits with the complex platform cover

2018 ◽  
Vol 9 (3) ◽  
pp. 587-627 ◽  
Author(s):  
K. Zh. Seminsky ◽  
V. A. Sankov ◽  
V. V. Ogibenin ◽  
Yu. P. Burzunova ◽  
A. I. Miroshnichenko ◽  
...  

The article presents the results of the tectonophysical approach to the analysis of stress fields and the structure of gas–condensate deposits with the complex platform cover. The discussed case is the Kovykta license area (LA) in Eastern Siberia, Russia. In the upper part of the cross section, the network of fault zones was identified from the relief lineaments and structural data. The dynamic conditions for faulting (compression, extension, and strike-slip) were reconstructed by the paragenetic analysis. The state of crustal stresses in the study area was studied by tectonophysical modeling using gelatin as an optically active material. The applied method was successful in distinguishing between the zones of faults in the platform cover, which differ in the degree of their activity in the specified stress fields. The lower part of the cross section in the NE segment of the Kovykta LA is considered as an example of the tectonophysical interpretation of the electrical and seismic survey data in order to identify the fault zones and reconstruct the corresponding stress fields. Based on the synthesis of the analyzed data, it is revealed that the deposits like the Kovykta gas condensate field (GCF) show the zone-block structure of the platform cover formed under the influence of several stress fields closely associated with the stages of tectogenesis in the adjacent mobile belts. The next objective is to enhance the tectonophysical approach in order to develop a hierarchical model of the GCF zone-block structure, which details need to be known for improving the prediction of sites with the complicated stress-strain state of rocks and mitigating the risks associated with drilling exploration and production wells.

2016 ◽  
Vol 08 (02) ◽  
pp. 1650026 ◽  
Author(s):  
Gaetano Giunta ◽  
Salim Belouettar ◽  
Olivier Polit ◽  
Laurent Gallimard ◽  
Philippe Vidal ◽  
...  

A family of hierarchical one-dimensional beam finite elements developed within a variables separation framework is presented. A Proper Generalized Decomposition (PGD) is used to divide the global three-dimensional problem into two coupled ones: one defined on the cross-section space (beam modeling kinematic approximation) and one belonging to the axis space (finite element solution). The displacements over the cross-section are approximated via a Unified Formulation (UF). A Lagrangian approximation is used along the beam axis. The resulting problems size is smaller than that of the classical equivalent finite element solution. The approach is, then, particularly attractive for higher-order beam models and refined axial meshes. The numerical investigations show that the proposed method yields accurate yet computationally affordable three-dimensional displacement and stress fields solutions.


Author(s):  
V.A. Markelov ◽  
R.A. Khusainov ◽  
V.Yu. Silov ◽  
E.V. Chepkasova

The paper shows a sophisticated approach of fault sealing analysis for Chayandinskoye gas condensate field. The gas-oil system of the field is complicated by large number of the geological faults, which leads to its block structure. Preliminary calculations using the field simulation models showed that the faults conductivity might significantly affect technical and economic features of the field. Conducted interference well tests allowed to estimate fault conductivity before the juxtaposed field blocks development. The studies were carried out in gas-saturated porous medium with low formation-pressure conductivity in wells located at distance exceeding 3000 m. Hydrodynamic connectivity between three areas was analyzed. As a result, the field geological structure was locally updated: the initially considered sealing fault identified by the seismic survey data was reconsidered as a partially conductive and additional sealing boundary between two wells was recognized, which wasn’t identified earlier due to its low amplitude. Proposed approach allows to estimate the hydrodynamic blocks connectivity at the early stages of the field development thus to improve simulation models forecasts and project decision making.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022015
Author(s):  
A I Kalashnik ◽  
N A Kalashnik

Abstract The stress-strain state of the Shtokman gas condensate field has been studied using mathematical modeling and accounting its block structure. It is assumed that the rock mass’s structure has a vertical block structure, which is under the influence of gravity and tectonic force fields. It has been revealed that the stress-strain state of the rocks depends essentially on relationships of initial operating efforts and in-situ gas pressure, which magnitude varies with its production; direction of the maximum forces and dip of angles of fault zones; and elastic characteristics of the main rock mass and fault zones. It has been established that the change in the dip of angle of fault zones and reducing the rocks’ stiffness increases tensile stress in the roof of a horizontal seam and near the sea bottom. A forecast assessment has been performed of the vertical displacement of a rock block contoured with faults relatively to the main rock mass.


2019 ◽  
Vol 109 ◽  
pp. 00051
Author(s):  
Viacheslav Lukinov ◽  
Mykola Zhykaliak

The results of the study of the influence of overburden stress in a solid mass undisturbed by mine workings on the compaction of sandstones within mine fields, exploration areas of Donbas coal deposits and some gas condensate and oil and gas condensate deposits of the Dnipro-Donets Depression (DDD) are presented. Regularities of changes in gas-bearing properties of porous reservoirs with the increase of overburden stress in an undisturbed solid mass, or its decrease in mine conditions are considered. The possibilities of rapid assessment of the forecast position of prospective sand reservoirs in the cross-section of the gas-bearing stratum are shown. Methods are proposed for calculating the position of sandstones of gas-bearing stratum, in which it is advisable to search for gas accumulations and its extraction in the coal and gas, oil and gas condensate and gas condensate fields of Donbas and DDD.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


2009 ◽  
Author(s):  
Marci Culley ◽  
Holly Angelique ◽  
Courte Voorhees ◽  
Brian John Bishop ◽  
Peta Louise Dzidic ◽  
...  

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


CFA Digest ◽  
2008 ◽  
Vol 38 (3) ◽  
pp. 55-56
Author(s):  
Kathryn Dixon Jost

Sign in / Sign up

Export Citation Format

Share Document