scholarly journals Chromosome-specific polymorphic SSR markers in tropical eucalypt species using low coverage whole genome sequences: systematic characterization and validation

2021 ◽  
Vol 19 (3) ◽  
pp. e33
Author(s):  
Maheswari Patturaj ◽  
Aiswarya Munusamy ◽  
Nithishkumar Kannan ◽  
Ulaganathan Kandasamy ◽  
Yasodha Ramasamy

Eucalyptus is one of the major plantation species with wide variety of industrial uses. Polymorphic and informative simple sequence repeats (SSRs) have broad range of applications in genetic analysis. In this study, two individuals of Eucalyptus tereticornis (ET217 and ET86), one individual each from E. camaldulensis (EC17) and E. grandis (EG9) were subjected to whole genome resequencing. Low coverage (10×) genome sequencing was used to find polymorphic SSRs between the individuals. Average number of SSR loci identified was 95,513 and the density of SSRs per Mb was from 157.39 in EG9 to 155.08 in EC17. Among all the SSRs detected, the most abundant repeat motifs were di-nucleotide (59.6%–62.5%), followed by tri- (23.7%–27.2%), tetra- (5.2%–5.6%), penta- (5.0%–5.3%) and hexa-nucleotide (2.7%–2.9%). The predominant SSR motif units were AG/CT and AAG/TTC. Computational genome analysis predicted the SSR length variations between the individuals and identified the gene functions of SSR containing sequences. Selected subset of polymorphic markers was validated in a full-sib family of eucalypts. Additionally, genome-wide characterization of single nucleotide polymorphisms, InDels and transcriptional regulators were carried out. These variations will find their utility in genome-wide association studies as well as understanding of molecular mechanisms involved in key economic traits. The genomic resources generated in this study would provide an impetus to integrate genomics in marker-trait associations and breeding of tropical eucalypts.

2018 ◽  
Author(s):  
Calvin McCarter ◽  
Judie Howrylak ◽  
Seyoung Kim

AbstractRecent technologies are generating an abundance of genome sequence data and molecular and clinical phenotype data, providing an opportunity to understand the genetic architecture and molecular mechanisms underlying diseases. Previous approaches have largely focused on the co-localization of single-nucleotide polymorphisms (SNPs) associated with clinical and expression traits, each identified from genome-wide association studies and expression quantitative trait locus (eQTL) mapping, and thus have provided only limited capabilities for uncovering the molecular mechanisms behind the SNPs influencing clinical phenotypes. Here we aim to extract rich information on the functional role of trait-perturbing SNPs that goes far beyond this simple co-localization. We introduce a computational framework called Perturb-Net for learning the gene network that modulates the influence of SNPs on phenotypes, using SNPs as naturally occurring perturbation of a biological system. Perturb-Net uses a probabilistic graphical model to directly model both the cascade of perturbation from SNPs to the gene network to the phenotype network and the network at each layer of molecular and clinical phenotypes. Perturb-Net learns the entire model by solving a single optimization problem with an extremely fast algorithm that can analyze human genome-wide data within a few hours. In our analysis of asthma data, for a locus that was previously implicated in asthma susceptibility but for which little is known about the molecular mechanism underlying the association, Perturb-Net revealed the gene network modules that mediate the influence of the SNP on asthma phenotypes. Many genes in this network module were well supported in the literature as asthma-related.


GigaScience ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Ruifei Yang ◽  
Xiaoli Guo ◽  
Di Zhu ◽  
Cheng Tan ◽  
Cheng Bian ◽  
...  

Abstract Background Uncovering the genetic architecture of economic traits in pigs is important for agricultural breeding. However, high-density haplotype reference panels are unavailable in most agricultural species, limiting accurate genotype imputation in large populations. Moreover, the infinitesimal model of quantitative traits implies that weak association signals tend to be spread across most of the genome, further complicating the genetic analysis. Hence, there is a need to develop new methods for sequencing large cohorts without large reference panels. Results We describe a Tn5-based highly accurate, cost- and time-efficient, low-coverage sequencing method to obtain 11.3 million whole-genome single-nucleotide polymorphisms in 2,869 Duroc boars at a mean depth of 0.73×. On the basis of these single-nucleotide polymorphisms, a genome-wide association study was performed, resulting in 14 quantitative trait loci (QTLs) for 7 of 21 important agricultural traits in pigs. These QTLs harbour genes, such as ABCD4 for total teat number and HMGA1 for back fat thickness, and provided a starting point for further investigation. The inheritance models of the different traits varied greatly. Most follow the minor-polygene model, but this can be attributed to different reasons, such as the shaping of genetic architecture by artificial selection for this population and sufficiently interconnected minor gene regulatory networks. Conclusions Genome-wide association study results for 21 important agricultural traits identified 14 QTLs/genes and showed their genetic architectures, providing guidance for genetic improvement harnessing genomic features. The Tn5-based low-coverage sequencing method can be applied to large-scale genome studies for any species without a good reference panel and can be used for agricultural breeding.


2020 ◽  
Vol 29 (R1) ◽  
pp. R73-R80
Author(s):  
Denis Awany ◽  
Imane Allali ◽  
Emile R Chimusa

Abstract Despite the meteoric rise in genome-wide association studies for metabolic diseases (MetD) over the last few years, our understanding of the pathogenesis of these diseases is still far from complete. Recent developments have established that MetD arises from complex interactions between host genetics, the gut microbiome and the environment. However, our knowledge of the genetic and microbiome components involved and the underlying molecular mechanisms remains limited. Here, we review and summarize recent studies investigating the genetic and microbiome basis of MetD. Then, given the critical importance of study-individual’s ancestry in these studies, we leverage 4932 whole-genome sequence samples from 18 worldwide ethnic groups to examine genetic diversity in currently reported variants associated with MetD. The analyses show marked differences in gene-specific proportion of pathogenic single-nucleotide polymorphisms (SNPs) and gene-specific SNPs MAFs across ethnic groups, highlighting the importance of population- and ethnic-specific investigations in pinpointing the causative factors for MetD. We conclude with a discussion of research areas where further investigation on interactions between host genetics, microbiome and the environment is needed.


2021 ◽  
Vol 14 (4) ◽  
pp. 287
Author(s):  
Courtney M. Vecera ◽  
Gabriel R. Fries ◽  
Lokesh R. Shahani ◽  
Jair C. Soares ◽  
Rodrigo Machado-Vieira

Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1175
Author(s):  
Amarni L. Thomas ◽  
Judith Marsman ◽  
Jisha Antony ◽  
William Schierding ◽  
Justin M. O’Sullivan ◽  
...  

The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2021 ◽  
Author(s):  
Tarek Souaid ◽  
Joya-Rita Hindy ◽  
Ernest Diab ◽  
Hampig Raphael Kourie

Bladder cancer (BC) is the most common cancer involving the urinary system and the ninth most common cancer worldwide. Tobacco smoking is the most important environmental risk factor of BC. Several single nucleotide polymorphisms have been validated by genome-wide association studies as genetic risk factors for BC. However, the identification of DNA mismatch-repair genes, including MSH2 in Lynch syndrome and MUTYH in MUTYH-associated polyposis, raises the possibility of monogenic hereditary forms of BC. Moreover, other genetic mutations may play a key role in familial and hereditary transmissions of BC. Therefore, the aim of this review is to focus on the major hereditary syndromes involved in the development of BC and to report BC genetic susceptibilities established with genome-wide significance level.


Sign in / Sign up

Export Citation Format

Share Document