Potential Effectiveness of Piperacillin/Tazobactam in Treating Pediatric Patients Infected With IMP-Type Carbapenemase-producing Enterobacteriaceae

2021 ◽  
Vol 13 (12) ◽  
Author(s):  
Xiu-Qin Jia ◽  
Feng Pang ◽  
Juan-Juan Xu ◽  
Ming Xin ◽  
Jian Zhang

Background: The resistance rate of carbapenem-resistant Enterobacteriaceae (CRE) is increasing yearly but rarely reported in children. Objectives: This retrospective study analyzed the characteristics of isolated CRE strains in pediatric patients, intending to explore reasonable antimicrobial treatment options. Methods: Some CRE isolates were collected from infected pediatric patients in Liaocheng People’s Hospital from January 2014 to December 2019. The strain identification and antimicrobial susceptibility testing were conducted using Vitek mass spectrometry and the Vitek 2 system, respectively. The carbapenemase genotypes of blaKPC, blaIMP, blaVIM, blaNDM-1, and blaOXA-48 were each detected by polymerase chain reaction and sequencing. The molecular homology analysis of strains was conducted via Pulse-field Gel Electrophoresis (PFGE). The clinical data of CRE-infected pediatric patients were collected from the hospital’s medical data information system. Results: Twenty CRE strains were isolated from 1945 infected pediatric patients with Enterobacteriaceae. All CRE strains showed multiple resistance to commonly used antimicrobials. Twelve strains of imipenemase (IMP)-4 and seven strains of IMP-8 carbapenemase were confirmed. Besides, PFGE revealed that two strains of Escherichia coli and three of Klebsiella pneumoniae had indistinguishable patterns. Sixteen patients were cured, including 10 patients using piperacillin/tazobactam. Conclusions: This study found the major sources of resistance were IMP carbapenemases. Piperacillin/tazobactam is potentially effective for the treatment of CRE infection, despite insensitivity in vitro.

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Fangyou Yu ◽  
Jingnan Lv ◽  
Siqiang Niu ◽  
Hong Du ◽  
Yi-Wei Tang ◽  
...  

ABSTRACT Carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKp) strains have emerged while antimicrobial treatment options remain limited. Herein, we tested the in vitro activity of ceftazidime-avibactam and other comparator antibiotics against 65 CR-hvKp isolates. Ceftazidime-avibactam, colistin, and tigecycline are highly active in vitro against CR-hvKp isolates (MIC90, ≤1 μg/ml), including K. pneumoniae carbapenemase 2 (KPC-2)-producing ST11 CR-hvKp. On the basis of previous clinical experience and the in vitro data presented herein, we posit that ceftazidime-avibactam is a therapeutic option against CR-hvKp infections.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.A. Lux ◽  
K. Biswas ◽  
M.W. Taylor ◽  
R.G. Douglas

Background: Despite best medical and surgical practice, some cases of chronic rhinosinusitis (CRS) can remain recalcitrant. Bacterial biofilms have been associated with the recalcitrance of sinonasal inflammation. Biofilms are highly resistant to commonly prescribed antibiotics. Accordingly, more effective antimicrobial treatment options are needed to treat refractory CRS. The aim of this study was to determine the in vitro efficacy of neutral electrolysed water (NEW) and povidone-iodine (PVI) against CRS-associated Staphylococcus aureus biofilms. Methods: Mature S. aureus biofilms were grown in a Centre for Disease Control (CDC) biofilm reactor. The antimicrobial activity of NEW, PVI and doxycycline was determined for both planktonic and biofilm cultures of a clinical S. aureus isolate using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) assays. Results: MICs and MBCs were determined for all antimicrobials. MBC values were similar to MICs for both antiseptics, but doxycycline MBCs were significantly higher than the associated MICs. Biofilms were highly resistant to NEW and doxycycline. The MBEC for doxycycline was between 500 and 1000 µg/mL. NEW was ineffective against biofilms and no MBEC could be determined. In contrast, a concentration of 10% of the commercial PVI solution (10 mg/mL PVI) led to effective eradication of mature biofilms. Conclusion: In this study, only PVI showed promising antibiofilm activity at physiological concentrations. The in vivo efficacy of PVI warrants further investigation of its potential as a treatment for recalcitrant CRS.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2006 ◽  
Vol 188 (15) ◽  
pp. 5364-5373 ◽  
Author(s):  
Ludovic Vial ◽  
Céline Lavire ◽  
Patrick Mavingui ◽  
Didier Blaha ◽  
Jacqueline Haurat ◽  
...  

ABSTRACT The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4VI, which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the phase variant are well documented, but the molecular processes involved are unknown. Here, the objective was to assess whether genomic rearrangements take place during phase variation of strain 4B. The random amplified polymorphic DNA (RAPD) profiles of strains 4B and 4VI differed. RAPD fragments observed only with the wild type were cloned, and three cosmids carrying the corresponding fragments were isolated. The three cosmids hybridized with a 750-kb plasmid and pulse-field gel electrophoresis analysis revealed that this replicon was missing in the 4VI genome. The same rearrangements took place during phase variation of 4BrecA. Large-scale genomic rearrangements during phase variation were demonstrated for two additional strains. In Azospirillum brasilense WN1, generation of stable variants was correlated with the disappearance of a replicon of 260 kb. For Azospirillum irakense KBC1, the variant was not stable and coincided with the formation of a new replicon, whereas the revertant recovered the parental genomic architecture. This study shows large-scale genomic rearrangements in Azospirillum strains and correlates them with phase variation.


2019 ◽  
Author(s):  
Jiaqi Zou ◽  
Zhaobing Tang ◽  
Jia Yan ◽  
Hang Liu ◽  
Yingzhu Chen ◽  
...  

AbstractDespite recent recognition of the ATP-binding cassette protein OptrA as an important mediator of linezolid-resistance in Enterococcus faecalis worldwide, the mechanisms of optrA gene acquisition and transfer remain poorly understood. In this study, we performed comprehensive molecular and phenotypic profiling of 44 optrA-carrying E. faecalis clinical isolates with linezolid-resistance. Pulse-field gel electrophoresis and DNA hybridization revealed the presence of optrA in the plasmid in 26 (59%) isolates and in the chromosome in 18 (41%) isolates. Conjugation experiments showed a successful transfer of optrA in 88.5% (23/26) of isolates carrying optrA in plasmids while no transfer occurred in any isolates carrying optrA in the chromosome (0/18). All 23 transconjugants exhibited in vitro resistance to linezolid and several other antibiotics, and were confirmed to contain optrA and other resistance genes. Plasmid typing demonstrated a predominance (18/23 or 78%) of rep9–type plasmids (pCF10 prototype) known to be the best studied sex pheromone responsive plasmids. Full plasmid genome sequencing of one isolate revealed the presence of drug resistance genes (optrA and fexA) and multiple sex pheromone response genes in the same plasmid, which represents the first sex pheromone responsive plasmid carrying optrA from a clinical isolate. PCR-based genotyping revealed the presence of three key sex pheromone response genes (prgA, prgB and prgC) in almost all 23 optrA-carrying isolates tested. Finally, functional studies of these isolates by clumping induction assay detected different degrees of clumping in most of the 23 isolates. Our analysis strongly suggests that optrA-mediated linezolid-resistance can be widely disseminated through sex pheromone plasmid transfer.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Baisheng Wang ◽  
Xiaoguang Xiao ◽  
Jingdong Zhang ◽  
Wenfeng Han ◽  
Salad Abdirahman Hersi ◽  
...  

Abstract Objective This study aimed to explore the epidemiological and microbiological characteristics of fracture-related infection (FRI), analyze the drug resistance characteristics of major pathogens, and provide timely and relatively complete clinical and microbiological data for antimicrobial treatment of FRI. Methods The clinical and microbiological data of patients with FRI from January 1, 2011, to December 31, 2020, were collected from three tertiary hospitals in Northeast China. The automatic microbial analysis system was used for strain identification and drug susceptibility testing, and the drug susceptibility results were determined in accordance with the latest Clinical and Laboratory Standards Institute (CLSI) criteria (as applicable each year). Results A total of 744 patients with FRI were enrolled. The incidence of FRI was about 1.5%, and 81.7% were male patients, with an average age of 48.98 ± 16.01 years. Open fractures accounted for 64.8%. Motor crush (32.8%) and falling (29.8%) were the main causes of injuries. The common sites of infection were the tibia and fibula (47.6%), femur (11.8%), foot (11.8%), and hand (11.6%). A total of 566 pathogenic bacteria were cultured in 378 patients with positive bacterial cultures, of which 53.0% were Gram-positive bacteria and 47.0% were Gram-negative bacteria. The most common pathogen at all sites of infection is Staphylococcus aureus. Staphylococcus aureus had a high resistance rate to penicillin (PEN), erythromycin (ERY), and clindamycin (CLI), exceeding 50%. Methicillin-resistant Staphylococcus aureus (MRSA) was more than 80% resistant to CLI and ERY. Conclusions The incidence of FRI in Northeast China was at a low level among major medical centers nationwide. Staphylococcus aureus was still the main pathogen causing bone infections, and the proportion of MRSA was lower than reported abroad, but we have observed an increase in the proportion of infections. Enterobacteriaceae have a higher resistance rate to third-generation cephalosporins and quinolones. For Enterobacteriaceae, other sensitive treatment drugs should be selected clinically.


2018 ◽  
Vol 11 (12) ◽  
pp. 935-943 ◽  
Author(s):  
Mona Shaaban ◽  
Ahmed Al-Qahtani ◽  
Mohammed Al-Ahdal ◽  
Rasha Barwa

Introduction: Emergence of carbapenem resistance in Pseudomonas aeruginosa increases the therapeutic dilemma. In this study, we investigated various mechanisms involved in the resistance of P. aeruginosa clinical isolates to carbapenems. Methodology: P. aeruginosa isolates were isolated from different clinical samples. The antimicrobial susceptibility was evaluated by disc diffusion method. Carbapenemases were detected among carbapenem resistant isolates. Expression level of mexB and oprD was determined by real-time PCR. Molecular relatedness among isolates was detected based on pulse-field gel electrophoresis (PFGE). Results: Ninety P. aeruginosa isolates were purified from clinical specimens. High levels of resistance to imipenem and meropenem were detected in 16 isolates. PCR analysis of carbapenemases indicated the prevalence of Verona integron-encoded metallo-beta-lactamase (VIM); four isolates produced only VIM enzymes (VIM-1 or VIM-2), while the remaining twelve co-produced both VIM-1 or VIM-2 and NDM enzymes. Additionally, real-time PCR analysis elucidated high expression levels of mexB in seven of the carbapenem resistant isolates and low expression of oprD in seven isolates. The identified carbapenem-resistant isolates were clustered into eleven PFGE profiles where clusters E1 and E2 involved isolates exhibiting multiple carbapenemase genes (blaNDM-1, blaVIM-1 and blaVIM-2). Conclusion: Various mechanisms underlying carbapenem resistance have been detected in our P. aeruginosa cohort of isolates. Emergence of P. aeruginosa as a reservoir of multiple carbapenemases is increasing over time limiting the treatment options to this serious infection. This increases the urgency for infection control practices to reduce the incidence of this infection.


2020 ◽  
Author(s):  
Jun-Ying Zhu ◽  
Guang-Yu Wang ◽  
Qing Wei ◽  
Zhen Shen ◽  
Qiong Li ◽  
...  

Abstract Background: Although carbapenem-resistant Klebsiella pneumoniae (CRKP) and hypermucoviscous K. pneumoniae (HMKP) were largely non-overlapping, the recent emergence of CR-HMKP has raised great alarm in the world. We compared the molecular characteristics of CRKP, HMKP and CR-HMKP isolates.Results: 220 cases of K. pneumoniae isolates was collected and identified between Jan 2015 and Dec 2016 from Renji Hospital. Carbapenem resistance test and string test were performed to screen CRKP, HMKP and CR-HMKP isolates. All the CRKP, HMKP and CR-HMKP isolates were investigated for capsular genotyping, virulence genes and resistance genes by PCR and DNA sequencing. Multilocus sequence typing (MLST) was used to characterize isolates sequence types (STs). Serum killing assay and mouse lethality assay were respectively performed to confirm the virulence of the isolates in vitro and in vivo. Of 220 K. pneumoniae,71 HMKP, 84 CRKP and 8 CR-HMKP were identified. Resistance rate to carbapenems was significantly higher in CRKP than HMKP and CR-HMKP. For MLST and serotyping, ST23 (26.8%),K1 (33.8%) and K2 (23.9%) serotypes were the most common in HMKP isolates while ST11 (84.5%, 100%) and K-nontypable (91.6%, 100%) were the predominant types in CRKP and CR-HMKP isolates. The existence of virulence genes rmpA, magA and iutA was significantly higher in HMKP while the prevalence of resistance gene blaKPC-2 was higher in CRKP and CR-HMKP. Virulence test in vivo and in vitro both showed the lower virulence of CRKP and CR-HMKP compared to HMKP.Conclusions: In spite of low virulence, the emergence of CR-HMKP indicates a confluence of hypermucoviscous phenotype and carbapenem resistance. Furthermore, the similar molecular characteristics between CRKP and CR-HMKP suggested that CR-HMKP might evolve from CRKP.


Author(s):  
Maria Chatzidimitriou ◽  
Panagiota Chatzivasileiou ◽  
Georgios Sakellariou ◽  
MariaAnna Kyriazidi ◽  
Asimoula Kavvada ◽  
...  

AbstractThe present study evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents.Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki between 2016 and 2018. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomérieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used to detect blaKPC, blaVIM, blaNDM and blaOXA-48 genes.The meropenem–EDTA and meropenem–boronic acid synergy test performed on the 24 K. pneumoniae strains demonstrated that 8 (33.3%) yielded positive for metallo-beta-lactamases (MBL) and 16 (66.6%) for K. pneumonia carbapenemases (KPC) production. Colistin demonstrated the highest in vitro activity (87.7%) among the 47 K. pneumoniae strains followed by gentamicin (76.5%) and tigecycline (51%). Among new antibiotics ceftazidime/avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacycline (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected.Well established antimicrobial agents such as colistin, gentamicin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline can be reliable options for the treatment of invasive infections caused by carbapenem-resistant K. pneumoniae.


Author(s):  
Gizem İnce ◽  
Hasan Cenk Mirza ◽  
Aylin Üsküdar Güçlü ◽  
Hale Gümüş ◽  
Çiğdem Erol ◽  
...  

Abstract Objectives To compare the in vitro activity of plazomicin and two older aminoglycosides (gentamicin and amikacin) against 180 isolates of Escherichia coli and Klebsiella pneumoniae, including subsets of 60 non-ESBL-producing, 60 ESBL-producing and 60 carbapenem-resistant (46 carrying blaOXA-48, 11 carrying blaNDM and 3 carrying blaOXA-48 and blaNDM) strains. Methods MICs of plazomicin, gentamicin and amikacin were determined by a gradient diffusion method. Gentamicin and amikacin MICs were interpreted according to CLSI criteria and EUCAST breakpoint tables. Plazomicin MICs were interpreted using FDA-defined breakpoints. Results All non-ESBL-producing and ESBL-producing isolates were susceptible to plazomicin. The plazomicin susceptibility rate (71.7%) in carbapenem-resistant isolates was significantly higher than those observed for gentamicin (45%) and amikacin (56.7% and 51.7% according to CLSI and EUCAST breakpoints, respectively). Gentamicin, amikacin and plazomicin susceptibility rates (35.6% for gentamicin; 44.4% and 37.8% for amikacin according to CLSI and EUCAST breakpoints, respectively; 64.4% for plazomicin) in carbapenem-resistant K. pneumoniae were significantly lower than those observed for carbapenem-resistant E. coli isolates (73.3% for gentamicin; 93.3% for amikacin and plazomicin). Gentamicin, amikacin and plazomicin susceptibility rates for blaNDM-positive isolates were lower than those observed for blaOXA-48-positive isolates, but differences were not statistically significant. Among the isolates that were non-susceptible to both gentamicin and amikacin, the plazomicin susceptibility rate was less than 30%. Conclusions Although plazomicin showed excellent in vitro activity against carbapenem-susceptible isolates, the plazomicin resistance rate increased to 35.6% among carbapenem-resistant K. pneumoniae and further increased to 45.5% among blaNDM-positive isolates.


Sign in / Sign up

Export Citation Format

Share Document