scholarly journals Codon-Optimized Expression and Purification of Truncated ORF2 Protein of Hepatitis E Virus in Escherichia coli

2014 ◽  
Vol 7 (7) ◽  
Author(s):  
Fatemeh Farshadpour ◽  
Reza Taherkhani ◽  
Manoochehr Makvandi ◽  
Hamid Rajabi Memari ◽  
Ali Reza Samarbafzadeh
Author(s):  
Mohamed Boumaiza ◽  
Khaled Trabelsi ◽  
Zeineb Choucha ◽  
Ines Akrouti ◽  
Serena Leone ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Takashi Nishiyama ◽  
Koji Umezawa ◽  
Kentaro Yamada ◽  
Masaharu Takahashi ◽  
Satoshi Kunita ◽  
...  

The hepatitis E virus (HEV) is a causative agent of hepatitis E. HEV virions in circulating blood and culture media are quasi-enveloped, while those in feces are nonenveloped. The capsid (ORF2) protein associated with an enveloped HEV virion is reported to comprise the translation product of leucine 14/methionine 16 to 660 (C-terminal end). However, the nature of the ORF2 protein associated with fecal HEV remains unclear. In the present study, we compared the molecular size of the ORF2 protein among fecal HEV, cell-culture-generated HEV (HEVcc), and detergent-treated protease-digested HEVcc. The ORF2 proteins associated with fecal HEV were C-terminally truncated and showed the same size as those of the detergent-treated protease-digested HEVcc virions (60 kDa), in contrast to those of the HEVcc (68 kDa). The structure prediction of the ORF2 protein (in line with previous studies) demonstrated that the C-terminal region (54 amino acids) of an ORF2 protein is in flux, suggesting that proteases target this region. The nonenveloped nondigested HEV structure prediction indicates that the C-terminal region of the ORF2 protein moves to the surface of the virion and is unnecessary for HEV infection. Our findings clarify the maturation of nonenveloped HEV and will be useful for studies on the HEV lifecycle.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 178
Author(s):  
Yiyang Chen ◽  
Tianxiang Chen ◽  
Yuhang Luo ◽  
Jie Fan ◽  
Meimei Zhang ◽  
...  

Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes of virus-neutralizing monoclonal antibodies that partially blocked rabbit infection with swine HEV. Here, individual and tandem fused peptides were synthesized, conjugated to keyhole limpet hemocyanin (KLH), then evaluated for immunoprotection of rabbits against swine HEV infection. Forty New Zealand White rabbits were randomly assigned to eight groups; groups 1 thru 5 received three immunizations with EPTV-KLH, VKLYTS-KLH, PSRPF-KLH, EPTVKLYTS-KLH, or EPTVKLYTSPSRPF-KLH, respectively; group 6 received truncated swine HEV ORF2 protein (sp239), and group 7 received phosphate-buffered saline. After an intravenous swine HEV challenge, all group 7 rabbits exhibited viremia and fecal virus shedding by 2–4 weeks post challenge (wpc), seroconversion by 4–9 wpc, elevated alanine aminotransferase (ALT) at 2 wpc, and severe liver lymphocytic venous periphlebitis. Only 1–2 rabbits/group in groups 1–4 exhibited delayed viremia, fecal shedding, seroconversion, increased ALT levels, and slight liver lymphocytic venous periphlebitis; groups 5–6 showed no pathogenic effects. Collectively, these results demonstrate that immunization with a polypeptide containing three genotype 4 HEV ORF2 neutralizing epitopes completely protected rabbits against swine HEV infection.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25378 ◽  
Author(s):  
Lijo John ◽  
Saijo Thomas ◽  
Ottmar Herchenröder ◽  
Brigitte M. Pützer ◽  
Stephan Schaefer

2007 ◽  
Vol 81 (7) ◽  
pp. 3339-3345 ◽  
Author(s):  
Milan Surjit ◽  
Shahid Jameel ◽  
Sunil K. Lal

ABSTRACT Hepatitis E virus (HEV) is a positive-strand RNA virus that is prevalent in much of the developing world. ORF2 is the major capsid protein of HEV. Although ORF2 is an N-linked glycoprotein, it is abundantly located in the cytoplasm in addition to having membrane and surface localization. The mechanism by which ORF2 protein obtains access to the cytoplasm is unknown. In this report, we prove that initially all ORF2 protein is present in the endoplasmic reticulum and a fraction of it becomes retrotranslocated to the cytoplasm. The ability of ORF2 to be retrotranslocated is dependent on its glycosylation status and follows the canonical dislocation pathway. However, in contrast to general substrates of the dislocation pathway, retrotranslocated ORF2 protein is not a substrate of the 26S proteasome complex and is readily detectable in the cytoplasm in the absence of any protease inhibitor, suggesting that the retrotranslocated protein is stable in the cytoplasm. This study thus defines the pathway by which ORF2 obtains access to the cytoplasm.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176409 ◽  
Author(s):  
Rafael Pandolfi ◽  
Denise Ramos de Almeida ◽  
Marcelo Alves Pinto ◽  
Luiz Carlos Kreutz ◽  
Rafael Frandoloso

2001 ◽  
Vol 1 (3) ◽  
pp. 122-128 ◽  
Author(s):  
Li Xiaofang ◽  
Mohammad Zafrullah ◽  
Faizan Ahmad ◽  
Shahid Jameel

Hepatitis E virus (HEV) is the causative agent of hepatitis E, an acute form of viral hepatitis. The open reading frame 2 (ORF2) of HEV encodes the viral capsid protein, which can self-oligomerize into virus-like particles. To understand the domains within this protein important for capsid biogenesis, we have carried out in vitro analyses of association and folding patterns of wild type and mutant ORF2 proteins. When expressedin vitroor in transfected cells, the ORF2 protein assembled as dimers, trimers and higher order forms. While N-terminal deletions upto 111 amino acids had no effect, the deletion of amino acids 585–610 led to reduced homo-oligomerization. This deletion also resulted in aberrant folding of the protein, as determined by its sensitivity to trypsin. This study suggests that a C-terminal hydrophobic region encompassing amino acids 585–610 of the ORF2 protein might be critical for capsid biogenesis.


2021 ◽  
Author(s):  
Kévin Hervouet ◽  
Martin Ferrié ◽  
Maliki Ankavay ◽  
Claire Montpellier ◽  
Charline Camuzet ◽  
...  

Producing multifunctional proteins is one of the major strategies developed by viruses to condense their genetic information. Here, we investigated the molecular determinants of the multifunctionality of hepatitis E virus (HEV) ORF2 capsid protein. We previously identified 3 isoforms of ORF2 which are partitioned in different subcellular compartments to perform distinct functions. Notably, the infectious ORF2 (ORF2i) protein is the structural component of the virion, whereas the genome-free secreted and glycosylated ORF2 proteins likely act as a humoral immune decoy. We identified a 5 amino acid Arginine-Rich Motif (ARM) located in the ORF2 N-terminal region as a central regulator of the subcellular localizations and functions of ORF2 isoforms. We showed that the ARM controls ORF2 nuclear translocation, promoting regulation of host antiviral responses. This motif also regulates the dual topology and functionality of ORF2 signal peptide, leading to the production of either cytosolic infectious ORF2i or reticular non-infectious glycosylated ORF2 forms. Furthermore, the ARM likely serves as a cleavage site of the glycosylated ORF2 protein. Finally, it promotes ORF2 membrane association that is likely essential for particle assembly. In conclusion, our observations highlight ORF2 ARM as a unique central regulator of ORF2 addressing that finely controls the HEV lifecycle.


Sign in / Sign up

Export Citation Format

Share Document