scholarly journals Evaluation of liquefaction potential based on CPT results using C4.5 decision tree

2019 ◽  
Vol 9 (20) ◽  
pp. 4226 ◽  
Author(s):  
Mahmood Ahmad ◽  
Xiao-Wei Tang ◽  
Jiang-Nan Qiu ◽  
Feezan Ahmad

Liquefaction is considered a damaging phenomenon of earthquakes and a major cause of concern in civil engineering. Therefore, its predictory assessment is an essential task for geotechnical experts. This paper investigates the performance of Bayesian belief network (BBN) and C4.5 decision tree (DT) models to evaluate seismic soil liquefaction potential based on the updated and relatively large cone penetration test (CPT) dataset (which includes 251 case histories), comparing them to a simplified procedure and an evolutionary-based approach. The BBN model was developed using the K2 machine learning algorithm and domain knowledge (DK) with data fusion methodology, while the DT model was created using a C4.5 algorithm. This study shows that the BBN model is preferred over the others for evaluation of seismic soil liquefaction potential. Owing to its overall performance, simplicity in practice, data-driven characteristics, and ability to map interactions between variables, the use of a BBN model in assessing seismic soil liquefaction is quite promising. The results of a sensitivity analysis show that ‘equivalent clean sand penetration resistance’ is the most significant factor affecting liquefaction potential. This study also interprets the probabilistic reasoning of the robust BBN model and most probable explanation (MPE) of seismic soil liquefied sites, based on an engineering point of view.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


Author(s):  
N. REN ◽  
M. ZARGHAM ◽  
S. RAHIMI

Stock selection rules are extensively utilized as the guideline to construct high performance stock portfolios. However, the predictive performance of the rules developed by some economic experts in the past has decreased dramatically for the current stock market. In this paper, C4.5 decision tree classification method was adopted to construct a model for stock prediction based on the fundamental stock data, from which a set of stock selection rules was derived. The experimental results showed that the generated rules have exceptional predictive performance. Moreover, it also demonstrated that the C4.5 decision tree classification model can work efficiently on the high noise stock data domain.


2013 ◽  
Vol 397-400 ◽  
pp. 2296-2300 ◽  
Author(s):  
Fei Shuai ◽  
Jun Quan Li

In current, there are complex relationship between the assets of information security product. According to this characteristic, we propose a new asset recognition algorithm (ART) on the improvement of the C4.5 decision tree algorithm, and analyze the computational complexity and space complexity of the proposed algorithm. Finally, we demonstrate that our algorithm is more precise than C4.5 algorithm in asset recognition by an application example whose result verifies the availability of our algorithm.Keywordsdecision tree, information security product, asset recognition, C4.5


2014 ◽  
Vol 10 (1) ◽  
pp. 28 ◽  
Author(s):  
David Bayu Ananda ◽  
Ari Wibisono

Abstract In general, Zakat Information Systems is established to manage the zakat services, so that the data can be well documented. This study proposes the existence of a feature that will determine the amount of zakat received by Mustahik automatically using C4.5 Decision Tree algorithm. This feature is expected to make the process of determining the amount of zakat be done easy and optimal. The data used in this study are the data taken from Masjid An-Nur, Pancoran, South Jakarta. The experiment results show that the proposed feature produces an accuracy rate over 85%.


Sign in / Sign up

Export Citation Format

Share Document