scholarly journals Flexural Strength and Behavioral Study of High-Performance Concrete Beams using Stress-Block Parameters

2021 ◽  
Vol 34 (11) ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Chang-Sik Choi

Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.


2022 ◽  
Vol 148 (1) ◽  
Author(s):  
Xin Wang ◽  
Shui Liu ◽  
Yuwei Shi ◽  
Zhishen Wu ◽  
Weidong He

2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.


2017 ◽  
Vol 19 (1) ◽  
pp. 305-317 ◽  
Author(s):  
Sifatullah Bahij ◽  
Saheed K. Adekunle ◽  
Mohammed Al-Osta ◽  
Shamsad Ahmad ◽  
Salah U. Al-Dulaijan ◽  
...  

2010 ◽  
Vol 452-453 ◽  
pp. 717-720 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Kyung Taek Koh ◽  
Sung Wook Kim

This paper intends to examine the effects if the length and shape of steel fibers on the mechanical characteristics of ultra-high performance concrete (UHPC). Accordingly, the length (l) of the steel fibers with diameter (d) of 0.2 mm is varied as 13 mm, 16.3 mm and 19.5 mm and their corresponding aspect ratios (l/d) are 65, 82 and 98. Straight and wave-shaped fibers are adopted to manufacture UHPC. Thereafter, the effects of the aspect ratio and characteristics of the wave-shape of the steel fibers on the strength characteristics of UHPC are examined through compressive and flexural strength tests. The results showed small differences in the workability and compressive behavior but revealed that changing the length of the fibers and increasing the aspect ratio are improving the flexural behavior of UHPC. Specifically, the flexural strength was enhanced by 25% and the flexural toughness by 30%. Compared to rectilinear fibers, the adoption of wave-shaped fibers is seen to degrade the flexural behavior regardless of the aspect ratio. Consequently, using straight steel fibers and adopting larger aspect ratio seems advisable to improve the toughness of UHPC.


Sign in / Sign up

Export Citation Format

Share Document