scholarly journals Effect of biological crust cover on soil saturated hydraulic conductivity under freeze-thaw conditions

2022 ◽  
Vol 42 (1) ◽  
Author(s):  
曾建辉,马波,郭迎香,张泽宇,李桂,李占斌,刘晨光 ZENG Jianhui
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenshuo Xu ◽  
Kesheng Li ◽  
Longxiao Chen ◽  
Weihang Kong ◽  
Chuanxiao Liu

AbstractStudy on the microscopic structure of saline–alkali soil can reveal the change of its permeability more deeply. In this paper, the relationship between permeability and microstructure of saline–alkali soil with different dry densities and water content in the floodplain of southwestern Shandong Province was studied through freeze–thaw cycles. A comprehensive analysis of soil samples was conducted using particle-size distribution, X-ray diffraction, freeze–thaw cycles test, saturated hydraulic conductivity test and mercury intrusion porosimetry. The poor microstructure of soil is the main factor that leads to the category of micro-permeable soil. The porosity of the local soil was only 6.19–11.51%, and ultra-micropores (< 0.05 μm) and micropores (0.05–2 μm) dominated the pore size distribution. Soil saturated water conductivity was closely related to its microscopic pore size distribution. As the F–T cycles progressed, soil permeability became stronger, with the reason the pore size distribution curve began to shift to the small pores (2–10 μm) and mesopores (10–20 μm), and this effect was the most severe when the freeze–thaw cycle was 15 times. High water content could promote the effects of freeze–thaw cycles on soil permeability and pore size distribution, while the increase of dry density could inhibit these effects. The results of this study provide a theoretical basis for the remediation of saline–alkali soil in the flooded area of Southwest Shandong.


1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


2019 ◽  
Vol 34 (2) ◽  
pp. 237-243
Author(s):  
Jari Hyväluoma ◽  
Mari Räty ◽  
Janne Kaseva ◽  
Riikka Keskinen

2021 ◽  
Vol 13 (13) ◽  
pp. 7301
Author(s):  
Marcin K. Widomski ◽  
Anna Musz-Pomorska ◽  
Wojciech Franus

This paper presents research considering hydraulic as well as swelling and shrinkage characteristics of potential recycled fine particle materials for compacted clay liner for sustainable landfills. Five locally available clay soils mixed with 10% (by mass) of NaP1 recycled zeolite were tested. The performed analysis was based on determined plasticity, cation exchange capacity, coefficient of saturated hydraulic conductivity after compaction, several shrinkage and swelling characteristics as well as, finally, saturated hydraulic conductivity after three cycles of drying and rewetting of tested specimens and the reference samples. The obtained results showed that addition of zeolite to clay soils allowed reduction in their saturated hydraulic conductivity to meet the required threshold (≤1 × 10−9 m/s) of sealing capabilities for compacted clay liner. On the other hand, an increase in plasticity, swelling, and in several cases in shrinkage, of the clay–zeolite mixture was observed. Finally, none of the tested mixtures was able to sustain its sealing capabilities after three cycles of drying and rewetting. Thus, the studied clayey soils mixed with sustainable recycled zeolite were assessed as promising materials for compacted liner construction. However, the liner should be operated carefully to avoid extensive dissication and cracking.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 26
Author(s):  
Muhammad Rashid Iqbal ◽  
Hiniduma Liyanage Damith Nandika ◽  
Yugo Isobe ◽  
Ken Kawamoto

Gas transport parameters such as gas diffusivity (Dp/D0), air permeability (ka), and their dependency on void space (air-filled porosity, ε) in a waste body govern convective air and gas diffusion at solid waste dumpsites and surface emission of various gases generated by microbial processes under aerobic and anaerobic decompositions. In this study, Dp/D0(ε) and ka(ε) were measured on dumping solid waste in Japan such as incinerated bottom ash and unburnable mixed waste as well as a buried waste sample (dumped for 20 years). Sieved samples with variable adjusted moistures were compacted by a standard proctor method and used for a series of laboratory tests for measuring compressibility, saturated hydraulic conductivity, and gas transport parameters. Results showed that incinerated bottom ash and unburnable mixed waste did not give the maximum dry density and optimum moisture content. Measured compressibility and saturated hydraulic conductivity of tested samples varied widely depending on the types of materials. Based on the previously proposed Dp/D0(ε) models, the diffusion-based tortuosity (T) was analyzed and unique power functional relations were found in T(ε) and could contribute to evaluating the gas diffusion process in the waste body compacted at different moisture conditions.


Sign in / Sign up

Export Citation Format

Share Document