scholarly journals Remote fingerstick blood collection for SARS-CoV-2 antibody testing

Author(s):  
Wilfredo F. Garcia-Beltran ◽  
Tyler E. Miller ◽  
Grace Kirkpatrick ◽  
Andrea Nixon ◽  
Michael G. Astudillo ◽  
...  

ABSTACT The rapid worldwide spread of severe acute respiratory system coronavirus 2 (SARSCoV-2) infection has propelled the rapid development of serological tests that can detect anti-SARS-CoV-2 antibodies. These have been used for studying the prevalence and spread of infection in different populations, helping establish a recent diagnosis of coronavirus disease 2019 (COVID-19), and will likely be used to confirm humoral immunity after infection or vaccination. However, nearly all lab-based high-throughput SARS-CoV-2 serological assays require a serum sample from venous blood draw, limiting their applications and scalability. Here, we present a method that enables large scale SARS-CoV-2 serological studies by combining self or office collection of fingerprick blood with a volumetric absorptive microsampling device (Mitra, Neoteryx, LLC) with a high-throughput electrochemiluminescence-based SARS-CoV-2 total antibody assay (Roche Elecsys, Roche Diagnostics, Inc.) that is emergency use authorization (EUA) approved for use on serum samples and widely used by clinical laboratories around the world. We found that the Roche Elecsys assay has a high dynamic range that allows for accurate detection of SARS-CoV-2 antibodies in serum samples diluted 1:20 as well as contrived dried blood extracts. Extracts of dried blood from Mitra devices acquired in a community seroprevalence study showed near identical sensitivity and specificity in detection of SARS-CoV-2 antibodies as compared to neat sera using predefined thresholds for each specimen type. Overall, this study affirms the use of Mitra dried blood collection device with the Roche Elecsys SARS-CoV-2 total antibody assay for remote or at-home testing as well as large-scale community seroprevalence studies.

2020 ◽  
Author(s):  
Wilfredo F. Garcia-Beltran ◽  
Tyler E. Miller ◽  
Grace Kirkpatrick ◽  
Andrea Nixon ◽  
Michael G. Astudillo ◽  
...  

ABSTRACTThe rapid worldwide spread of SARS-CoV-2 infection has propelled the accelerated development of serological tests that can detect anti-SARS-CoV-2 antibodies. These have been used for studying the prevalence and spread of infection in different populations, helping establish a recent diagnosis of COVID-19, and will likely be used to confirm humoral immunity after infection or vaccination. However, nearly all lab-based high-throughput SARS-CoV-2 serological assays require a serum sample from venous blood draw, limiting their applications and scalability. Here, we present a method that enables large scale SARS-CoV-2 serological studies by combining self or office collection of fingerprick blood with a volumetric absorptive microsampling device (Mitra, Neoteryx, LLC) with a high-throughput electrochemiluminescence-based SARS-CoV-2 total antibody assay (Roche Elecsys, Roche Diagnostics, Inc.) that is EUA approved for use on serum samples and widely used by clinical laboratories around the world. We found that the Roche Elecsys assay has a high dynamic range that allows for accurate detection of SARS-CoV-2 antibodies in serum samples diluted 1:20 as well as contrived dried blood extracts. Extracts of dried blood from Mitra devices acquired in a community seroprevalence study showed near identical sensitivity and specificity in detection of SARS-CoV-2 antibodies as compared to neat sera using predefined thresholds for each specimen type. Overall, this study affirms the use of Mitra dried blood collection device with the Roche Elecsys SARS-CoV-2 total antibody assay for remote or at-home testing as well as large-scale community seroprevalence studies.


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Rutger M. Schepp ◽  
Cornelis A. M. de Haan ◽  
Deidre Wilkins ◽  
Hans Layman ◽  
Barney S. Graham ◽  
...  

ABSTRACT Human respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in (premature) newborns and causes respiratory illness in the elderly. Different monoclonal antibody (MAb) and vaccine candidates are in development worldwide and will hopefully become available within the near future. To implement such RSV vaccines, adequate decisions about immunization schedules and the different target group(s) need to be made, for which the assessment of antibody levels against RSV is essential. To survey RSV antigen-specific antibody levels, we developed a serological multiplex immunoassay (MIA) that determines and distinguishes antibodies against the five RSV glycoproteins postfusion F, prefusion F, Ga, Gb, and N simultaneously. The standardized RSV pentaplex MIA is sensitive, highly reproducible, and specific for the five RSV proteins. The preservation of the conformational structure of the immunodominant site Ø of prefusion F after conjugation to the beads has been confirmed. Importantly, good correlation is obtained between the microneutralization test and the MIA for all five proteins, resulting in an arbitrarily chosen cutoff value of prefusion F antibody levels for seropositivity in the microneutralization assay. The wide dynamic range requiring only two serum sample dilutions makes the RSV-MIA a high-throughput assay very suitable for (large-scale) serosurveillance and vaccine clinical studies. IMPORTANCE In view of vaccine and monoclonal development to reduce hospitalization and death due to lower respiratory tract infection caused by RSV, assessment of antibody levels against RSV is essential. This newly developed multiplex immunoassay is able to measure antibody levels against five RSV proteins simultaneously. This can provide valuable insight into the dynamics of (maternal) antibody levels and RSV infection in infants and toddlers during the first few years of life, when primary RSV infection occurs.


2010 ◽  
Vol 17 (6) ◽  
pp. 904-909 ◽  
Author(s):  
Peter D. Burbelo ◽  
Alexandra T. Issa ◽  
Kathryn H. Ching ◽  
Jeffrey I. Cohen ◽  
Michael J. Iadarola ◽  
...  

ABSTRACT There is currently a need for improved serological tests for the diagnosis and monitoring of Lyme disease, an infection caused by Borrelia burgdorferi. In the present study, we evaluated luciferase immunoprecipitation systems (LIPSs) for use for profiling of the antibody responses to a panel of B. burgdorferi proteins for the diagnosis of Lyme disease. Initially, serum samples from a cohort of patients and controls (n = 46) were used for training and were profiled by the use of 15 different B. burgdorferi antigen constructs. For the patient sera, the antibody responses to several B. burgdorferi antigens, including VlsE, flagellin (FlaB), BmpA, DbpA, and DbpB, indicated that the antigens had high levels of immunoreactivity. However, the best diagnostic performance was achieved with a synthetic protein, designated VOVO, consisting of a repeated antigenic peptide sequence, VlsE-OspC-VlsE-OspC, Analysis of an independent set of serum samples (n = 139) used for validation showed that the VOVO LIPS test had 98% sensitivity (95% confidence interval [CI], 93% to 100%; P < 0.0001) and 100% specificity (95% CI, 94% to 100%; P < 0.0001). Similarly, the C6 peptide enzyme-linked immunosorbent assay (ELISA) also had 98% sensitivity (95% CI, 93% to 100%; P < 0.0001) and 98% specificity (95% CI, 90% to 100%; P < 0.0001). Receiver operating characteristic analysis revealed that the rates of detection of Lyme disease by the LIPS test and the C6 ELISA were not statistically different. However, the VOVO LIPS test displayed a wide dynamic range of antibody detection spanning over 10,000-fold without the need for serum dilution. These results suggest that screening by the LIPS test with VOVO and other B. burgdorferi antigens offers an efficient quantitative approach for evaluation of the antibody responses in patients with Lyme disease.


2017 ◽  
Vol 55 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Michael Cornes ◽  
Edmée van Dongen-Lases ◽  
Kjell Grankvist ◽  
Mercedes Ibarz ◽  
Gunn Kristensen ◽  
...  

AbstractIt has been well reported over recent years that most errors within the total testing process occur in the pre-analytical phase (46%–68.2%), an area that is usually outside of the direct control of the laboratory and which includes sample collection (phlebotomy). National and international (WHO, CLSI) guidelines recommend that the order of draw of blood during phlebotomy should be blood culture/sterile tubes, then plain tubes/gel tubes, then tubes containing additives. This prevents contamination of sample tubes with additives from previous tubes that could cause erroneous results. There have been a number of studies recently looking at whether order of draw remains a problem with modern phlebotomy techniques and materials, or it is an outdated practice followed simply because of historical reasons. In the following article, the European Federation of Clinical Chemistry and Laboratory Medicine Working Group for the Preanalytical Phase (EFLM WG-PRE) provides an overview and summary of the literature with regards to order of draw in venous blood collection. Given the evidence presented in this article, the EFLM WG-PRE herein concludes that a significant frequency of sample contamination does occur if order of draw is not followed during blood collection and when performing venipuncture under less than ideal circumstances, thus putting patient safety at risk. Moreover, given that order of draw is not difficult to follow and knowing that ideal phlebotomy conditions and protocols are not always followed or possible, EFLM WG-PRE supports the continued recommendation of ensuring a correct order of draw for venous blood collection.


2020 ◽  
Author(s):  
Lottie Brown ◽  
Rachel Louise Byrne ◽  
Alice Fraser ◽  
Sophie I Owen ◽  
Ana I Cubas Atienzar ◽  
...  

Serological testing is emerging as a powerful tool to progress our understanding of COVID-19 exposure, transmission and immune response. Large-scale testing is limited by the need for in-person blood collection by staff trained in venepuncture. Capillary blood self-sampling and postage to laboratories for analysis could provide a reliable alternative. Two-hundred and nine matched venous and capillary blood samples were obtained from thirty nine participants and analysed using a COVID-19 IgG ELISA to detect antibodies against SARS-CoV-2. Thirty seven out of thirty eight participants were able to self-collect an adequate sample of capillary blood (≥50 μl). Using plasma from venous blood collected in lithium heparin as the reference standard, matched capillary blood samples, collected in lithium heparin-treated tubes and on filter paper as dried blood spots, achieved a Cohen′s kappa coefficient of >0.88 (near-perfect agreement). Storage of capillary blood at room temperature for up to 7 days post sampling did not affect concordance. Our results indicate that capillary blood self-sampling is a reliable and feasible alternative to venepuncture for serological assessment in COVID-19.


Author(s):  
Eline Meyers ◽  
Stefan Heytens ◽  
Asangwing Formukong ◽  
Hanne Vercruysse ◽  
An De Sutter ◽  
...  

Since the implementation of newly developed SARS-CoV-2 vaccines in the general population, serological tests are of increasing importance. Because DBS samples can be obtained with a finger prick and can be shipped and stored at room temperature, they are optimal for use in large-scale SARS-CoV-2 serosurveillance or postauthorization vaccination studies, even in an elderly study population.


2021 ◽  
Author(s):  
Angela Mc Ardle ◽  
Aleksandra Binek, ◽  
Annie Moradian ◽  
Blandine Chazarin Orgel ◽  
Alejandro Rivas ◽  
...  

Background: Accurate discovery assay workflows are critical for identifying authentic circulating protein biomarkers in diverse blood matrices. Maximizing the commonalities in the proteomic workflows between different biofluids simplifies the approach and increases the likelihood for reproducibility. We developed a workflow that allows flexibility for high and mid–throughput analysis for three blood–based proteomes: naive plasma, plasma depleted of the 14 most abundant proteins, and dried blood. Methods: Optimal conditions for sample preparation and DIA–MS analysis were established in plasma then automated and adapted for depleted plasma and whole blood. The MS workflow was modified to facilitate sensitive high–throughput or deep profile analysis with mid–throughput analysis. Analytical performance was evaluated from 5 complete workflows repeated over 3 days as well as a linearity analysis of a 5—6–point dilution curve. Result: Using our high-throughput workflow, 74%, 93%, 87% of peptides displayed an inter-day CV<30% in plasma, depleted plasma and whole blood. While the mid-throughput workflow had 67%, 90%, 78% of peptides in plasma, depleted plasma and whole blood meeting the CV<30% standard. Lower limits of detection and quantitation were determined for proteins and peptides observed in each biofluid and workflow. Combining the analysis of both high–throughput plasma fractions exceeded the number of reliably identified proteins for individual biofluids in the mid–throughput workflows. Conclusion: The workflow established here allowed for reliable detection of proteins covering a broad dynamic range. We envisage that implementation of this standard workflow on a large scale will facilitate the translation of candidate markers into clinical use.


2021 ◽  
Author(s):  
Anita Siller ◽  
Lisa Seekircher ◽  
Gregor A Wachter ◽  
Manfred Astl ◽  
Lena Tschiderer ◽  
...  

Background: There is uncertainty about the seroprevalence of anti-SARS-CoV-2 antibodies in the general population of Austria, and about the extent to which antibodies elicited by vaccination or infection wane over time. Aim: To estimate seroprevalence, waning, and correlates of anti-SARS-CoV-2 IgG antibodies in the Federal State of Tyrol, Austria. Methods: We conducted a seroepidemiological study between June 2020 and September 2021, enrolling blood donors aged 18-70 years across Tyrol, Austria (participation rate 84.0%). We analysed serum samples for antibodies against spike or nucleocapsid proteins of SARS-CoV-2 with Abbott SARS-CoV-2 IgG assays. Results: We performed 47,363 serological tests among 35,193 individuals (median age 43.1 years [IQR: 29.3-53.7], 45.3% women, 10.0% with prior SARS-CoV-2 infection). Seroprevalence increased from 3.4% (95% CI: 2.8-4.2%) in June 2020 to 82.7% (95% CI: 81.4-83.8%) in September 2021, largely due to vaccination. Anti-spike IgG seroprevalence was 99.6% (99.4-99.7%) among fully vaccinated individuals, 90.4% (88.8-91.7%) among unvaccinated with prior infection, and 11.5% (10.8-12.3%) among unvaccinated without known prior infection. Anti-spike IgG levels were reduced by 44.0% (34.9-51.7%) at 5-6 months compared to 0-3 months after infection. In fully vaccinated individuals, they decreased by 31.7% (29.4-33.9%) per month. In multivariable adjusted analyses, both seropositivity among unvaccinated and antibody levels among fully vaccinated individuals were higher at young age (<25 years), higher with a known prior infection, and lower in current smokers. Conclusion: Seroprevalence in Tyrol increased to 82.7% in September 2021, with the bulk of seropositivity stemming from vaccination. Antibody levels substantially and gradually declined after vaccination or infection.


Author(s):  
Renata G. F. Alvim ◽  
Tulio M. Lima ◽  
Danielle A. S. Rodrigues ◽  
Federico F. Marsili ◽  
Vicente B. T. Bozza ◽  
...  

AbstractBackgroundAccurate serological tests are essential tools to allow adequate monitoring and control of COVID-19 spread. Production of a low-cost and high-quality recombinant viral antigen can enable the development of reliable and affordable serological assays, which are urgently needed to facilitate epidemiological surveillance studies in low-income economies.MethodsTrimeric SARS-COV-2 spike (S) protein was produced in serum-free, suspension-adapted HEK293 cells. Highly purified S protein was used to develop an ELISA, named S-UFRJ test. It was standardized to work with different types of samples: (i) plasma or serum from venous blood samples; (ii) eluates from dried blood spots (DBS) obtained by collecting blood drops from finger prick.FindingsWe developed a cost-effective, scalable technology to produce S protein based on its stable expression in HEK293 cells. Using this recombinant antigen we presented a workflow for test development in the setting of a pandemic, starting from limited amounts of samples up to reaching final validation with hundreds of samples. Test specificity was determined to be 98.6%, whereas sensitivity was 95% for samples collected 11 or more days after symptoms onset. A ROC analysis allowed optimizing the cut-off and confirming the high accuracy of the test. Endpoint titers were shown to correlate with virus neutralization assessed as PRNT90. There was excellent agreement between plasma and DBS samples, significantly simplifying sample collection, storing and shipping. An overall cost estimate revealed that final retail price could be in the range of one US dollar.InterpretationThe S-UFRJ assay developed herein meets the quality requirements of high sensitivity and specificity. The low cost and the use of mailable DBS samples allow for serological surveillance of populations regardless of geographical and socio-economic aspects, with special relevance for public health policy actions in low-income countries.FundingCTG, Senai DN/CETIQT, FAPERJ, CNPq, CAPES and Instituto Serrapilheira.


Sign in / Sign up

Export Citation Format

Share Document