scholarly journals Molecular detection of -lactamases and aminoglycoside resistance genes among Escherichia coli isolates recovered from medicinal plant

2013 ◽  
Vol 7 (20) ◽  
pp. 2305-2310 ◽  
Author(s):  
Aleisa ◽  
M A ◽  
Ashgan ◽  
H M ◽  
Alnasserallah ◽  
...  
2010 ◽  
Vol 59 (6) ◽  
pp. 702-707 ◽  
Author(s):  
Pak-Leung Ho ◽  
River C. Wong ◽  
Stephanie W. Lo ◽  
Kin-Hung Chow ◽  
Samson S. Wong ◽  
...  

A bacterial collection (n=249) obtained in Hong Kong from 2002 to 2004 was used to investigate the molecular epidemiology of aminoglycoside resistance among Escherichia coli isolates from humans and food-producing animals. Of these, 89 isolates were gentamicin-sensitive (human n=60, animal n=29) and 160 isolates were gentamicin-resistant (human n=107, animal n=53). Overall, 84.1 % (90/107) and 75.5 % (40/53) of the gentamicin-resistant isolates from human and animal sources, respectively, were found to possess the aacC2 gene. The aacC2 gene for 20 isolates (10 each for human and animal isolates) was sequenced. Two alleles were found that were equally distributed in human and animal isolates. PFGE showed that the gentamicin-resistant isolates exhibited diverse patterns with little clonality. In some isolates, the aacC2 gene was encoded on large transferable plasmids of multiple incompatibility groups (IncF, IncI1 and IncN). An IncFII plasmid of 140 kb in size was shared by one human and three animal isolates. In summary, this study showed that human and animal isolates share the same pool of resistance genes.


2008 ◽  
Vol 74 (12) ◽  
pp. 3658-3666 ◽  
Author(s):  
Sheryl P. Gow ◽  
Cheryl L. Waldner ◽  
Josee Harel ◽  
Patrick Boerlin

ABSTRACT The objective of this study was to examine associations among the genetic determinants of antimicrobial resistance (AMR) in 207 fecal generic Escherichia coli isolates obtained from 77 cow-calf herds in western Canada. Twenty-three resistance genes corresponding to six different antimicrobial families were assessed using DNA hybridization and PCR. The most common resistance genes in the study sample (207 isolates) were sul2 (48.3%), tet(B) (45.4%), and ant(3″)-Ia (aadA1) (19.3%). Several statistically significant associations between the examined resistance genes were detected. The strongest associations observed were those between genes for resistance to chloramphenicol (catI) and trimethoprim (dhfrI) (odds ratio [OR] = 214; P = 0.0001), sulfonamide (sul1) and chloramphenicol (catI) (OR = 96.9; P = 0.0001), streptomycin [ant(3″)-Ia (aadA1)] and trimethoprim (dhfrI) (OR = 96.2; P = 0.0001), sulfonamide (sul1) and streptomycin [ant(3″)-Ia (aadA1)] (OR = 79.3; P = 0.0001), and tetracycline [tet(B)] and sulfonamides (sul2) (OR = 25.7; P = 0.0001). At least one of the resistance genes corresponding to each nonaminoglycoside family of antimicrobials examined in this study was associated with the two aminoglycoside resistance genes ant(3″)-Ia (aadA1) and aph(3′)-Ia. The multiple, strong associations between genes and the diverse nature of the associations described in this study demonstrate the complexity of resistance gene selection in cow-calf herds and should be considered in the planning of AMR control practices for cow-calf operations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueya Zhang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
Wangxiao Zhou ◽  
Changrui Qian ◽  
...  

Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.


Author(s):  
Behrouz Latifi ◽  
Saeed Tajbakhsh ◽  
Leila Ahadi ◽  
Forough Yousefi

Background and Objectives: Increasing the rate of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae has given rise to a major healthcare issue in clinical settings over the past few years. Treatment of these strains is hardly effective since the plasmid encoding ESBL may also carry other resistance genes including aminoglycosides. The current study aimed to evaluate the prevalence of ESBL-producing K. pneumoniae and investigate the coexistence of Cefoxitamase-Munich (bla ) with aminoglycoside-modifying enzyme (AME) genes, aac(3)IIa as well as aac(6′)Ib, in CTX‑M‑producing K. pneumoniae isolated from patients in Bushehr province, Iran. Materials and Methods: A total of 212 K. pneumoniae isolates were collected and confirmed using polymerase chain re‑ action (PCR) of the malate dehydrogenase gene. Isolates were screened for production of ESBL. Phenotypic confirmatory test was performed using combined disk test. The genes encoding CTX-M groups and AME genes, aac(3)IIa and aac(6′)Ib, were investigated by PCR. Results: The ESBL phenotype was detected in 56 (26.4%) K. pneumoniae isolates. Moreover, 83.9% of ESBL-producing isolates carried the genes for CTX-M type β-lactamases, which were distributed into the two genetic groups of CTX-M-1 (97.8%)- and CTX-M-2 (2.1%)-related enzymes. Notably, among K. pneumoniae isolates containing the blaCTX‑M gene, 68.08% of isolates harbored AME genes. In addition, the coexistence of bla in 46.8% of CTX-M-producing K. pneumoniae isolates. Conclusion: This study provides evidence of a high prevalence of AME genes in CTX-M- producing K. pneumoniae iso‑ lates; therefore, in the initial empirical treatment of infections caused by ESBL-KP in regions with such antibiotic resistance patterns, aminoglycoside combination therapy should be undertaken carefully.


2006 ◽  
Vol 135 (3) ◽  
pp. 502-504 ◽  
Author(s):  
T. CAETANO ◽  
S. FERREIRA ◽  
A. P. MONDEGO ◽  
A. CORREIA ◽  
S. MENDO

In99, a possible ancestor of In100, is a class 1 integron associated with carbenicillinase (blaPSE) and aminoglycoside resistance genes [aac(6′)-Ib and aadA2]. In99 was present in 8 of 81 clinical isolates of Pseudomonas aeruginosa from unrelated patients collected in different years. The strains fell into two clonal groups and exhibited resistance to β-lactams and aminoglycosides.


Sign in / Sign up

Export Citation Format

Share Document