scholarly journals Estudo numérico e observacional de um evento de diminuição da coluna total de ozônio de origem tropical no Sul do Brasil

2020 ◽  
Vol 42 ◽  
pp. e5
Author(s):  
Lissette Guzmán ◽  
Vagner Anabor ◽  
Luiz Angelo Steffenel ◽  
Damaris Kirsch Pinheiro

A depletion event of 11% of the total ozone column over South Brazil was analyzed from observational data and numerical simulations. The meteorological fields resulting from the simulation did not show the presence of subtropical or polar jets over the study region. The real and simulated soundings showed the dryness at high and low tropospheric levels, pointing a stratospheric intrusion. The total ozone column values from ERA-5 reanalyses showed the maintenance of a region with low total ozone values in tropical latitudes and its advance over the study region, before and during the depletion event. The isentropic retro-trajectories of air parcels at different levels, obtained with the Hybrid Single Lagrangian Integrated Trajectory Model (HYSPLIT), confirmed the zonal transport from the tropical region over Southern Brazil. A combination of a cyclonic circulation at the 850 K stratospheric isentropic level and an intense anticyclonic circulation at the 440 K tropospheric level, over the depletion region, was identified as responsible for the tropopause lift and horizontal transport of ozone-rich air out of the column.

2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


1998 ◽  
Vol 22 (11) ◽  
pp. 1501-1504
Author(s):  
A.J.M Piters ◽  
P.F Levelt ◽  
M.A.F Allaart ◽  
H.M Kelder

2020 ◽  
Author(s):  
Javer A. Barrera ◽  
Rafael P. Fernandez ◽  
Fernando Iglesias-Suarez ◽  
Carlos A. Cuevas ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (


2016 ◽  
Vol 5 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Tomi Karppinen ◽  
Kaisa Lakkala ◽  
Juha M. Karhu ◽  
Pauli Heikkinen ◽  
Rigel Kivi ◽  
...  

Abstract. Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.


2013 ◽  
Vol 58 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Boyan Petkov ◽  
Vito Vitale ◽  
Claudio Tomasi ◽  
Mauro Mazzola ◽  
Christian Lanconelli ◽  
...  

2012 ◽  
Vol 5 (9) ◽  
pp. 2169-2181 ◽  
Author(s):  
M. E. Koukouli ◽  
D. S. Balis ◽  
D. Loyola ◽  
P. Valks ◽  
W. Zimmer ◽  
...  

Abstract. The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011), Ozone Monitoring Experiment [OMI] (since 2004) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002) total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3) data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3) data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.


2005 ◽  
Vol 26 (16) ◽  
pp. 3433-3440 ◽  
Author(s):  
A. Sahoo ◽  
S. Sarkar ◽  
R. P. Singh ◽  
M. Kafatos ◽  
M. E. Summers

Sign in / Sign up

Export Citation Format

Share Document