scholarly journals Analysis of residual sludge stored in UASB of a WWT in Petrolina-PE-Brazil

Author(s):  
Erick De Aquino Santos ◽  
Keyla Vitória Marques Xavier ◽  
Marcella Vianna Cabral Paiva ◽  
Miriam Cleide Cavalcante de Amorim ◽  
Michely Correia Diniz

Anaerobic digestion is a process that occurs through microorganisms in an anoxic condition and aims to digest organic matter resulting mainly in biogas. This process is common in wastewater treatment WWTs (Waste Water Treatment), which usually occur in bioreactors. In Brazil the most widespread is the UASB (Upflow Anaerobic Sludge Blanket) reactor due to its temperature conditions, which found in the country an ideal parameter. Archeas make up the microbiota responsible for digestion acting in the final stage of methanogenesis. The studies of these organisms are mainly through metagenomics, because laboratory cultivation is difficult. Therefore, the research aimed to study the physical and molecular parameters of the sludge. Four UASB reactors from WWT Center in Petrolina – Pernambuco- Brazil were evaluated. For the DNA extraction process the adapted protocol was applied, the physical analysis of the solids obeyed the determinations of APHA (2005). DNA extraction was achieved with the modified protocol and demonstrated a high concentration of DNA present in the samples, being the 4 most abundant reactor. Physical quantifications of the solids analysis showed that the values found are in compliance with current standards.

1983 ◽  
Vol 15 (8-9) ◽  
pp. 177-195 ◽  
Author(s):  
G Lettinga ◽  
S W Hobma ◽  
L W Hulshoff Pol ◽  
W de Zeeuw ◽  
P de Jong ◽  
...  

This paper aims to contribute to the assesment of a (more) optimal design and operation of a high rate anaerobic waste water treatment process. The discussion will be made on basis of available information of modern anaerobic waste water treatment processes, such as the Anaerobic Filter Process and the Upflow Anaerobic Sludge Blanket process and of recently introduced Attached Film processes.


1992 ◽  
Vol 25 (7) ◽  
pp. 373-382 ◽  
Author(s):  
R. J. Frankin ◽  
W. A. A. Koevoets ◽  
W. M. A. van Gils ◽  
A. van der Pas

Over the past ten years Gist-brocades has been engaged in anaerobic waste water treatment. An in-depth research program concluded in the construction and operation of three full-scale plants for the treatment of yeast processing and pharmaceutical waste waters. Using the operational experience of the fluidized bed biomass-on-carrier systems and incorporating the strong assets of the Upflow Anaerobic Sludge Blanket (UASB) system features a new process was developed, the so-called Upflow Fluidized Bed (UFB) BIOBED® process, which operation appeared to be very successful over a > 3 year period at full scale. The UFB BIOBED® system combines both characteristics of the UASB and FB processes. Biomass is present in a granular form but conditions with respect to upflow velocities for water and gas approach those of the original Fluidized Bed - biomass on carrier - (FB) system.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 73-82 ◽  
Author(s):  
Sheng-Shung Cheng ◽  
Chiou-Yuan Ho ◽  
Jer-Horng Wu

A pilot-scale upflow anaerobic sludge blanket (UASB) reactor was employed to treat the wastewater of a purified-terephthalic-acid (PTA) manufacturing factory. The performance of UASB reactor in terms of COD removal was achieved 62% at the volumetric loading rate of 2.93 kg COD / m3/day. One of the major constituents, p-toluic acid in PTA wastewater was the refractory component due to the methyl substituent on the aromatic ring, which restricted the biodegradation performance. Moreover, from our study, it was surprising that high concentration of acetic acid would retard the degradation of aromatics in the sludge bed. A control strategy of acetic acid level in the sludge bed was suggested during the start-up period. Comparison of the anaerobic biodegradability of aromatic substituents in PTA wastewater was concluded as the following sequence: –COOH > –CHO ≥ –CH3 in terms of the derivative functional groups based on the benzoic acid. Observation of bacterial population of the sludge granules showed high diversity of syntrophic structure on the biogranular surface as well as acetoclastic methanogens.


2009 ◽  
Vol 33 (4) ◽  
pp. 1139-1144 ◽  
Author(s):  
Aguinaldo Menegassi Pereira Lourenço ◽  
Cláudio Milton Montenegro Campos

The present research was carried out in the Laboratory of Water Analysis at the Engineering Department at Federal University of Lavras (LWAED-UFLA), in order to evaluate the hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB) that was continuously fed with liquid effluent from swine manure with solid separation over 2mm. The hydrodynamic parameters were determined by a tracer study, under hydraulic retention time (HRT) of 12 hours, using Lithium Chloride (LiCl) as a tracer. The system was monitored periodically through physical analysis of samples collected at UASB, during the steady-state operational conditions. The physical-chemical analyses were accomplished using a flame photometry. The operational average temperature in the UASB reactor was 23.9ºC .The UASB hydrodynamic parameters determined were: average residence time (<img src="/img/revistas/cagro/v33n4/t4_barra.gif" align="absmiddle">) of 38.3 h, number of dispersion d= 0.27, and the flow type was characterized as dispersed flow of great intensity. This research is of great importance due to the fact that the scaling-up of biological reactors is based on the hydrodynamic behavior, through which the bacterial kinetic is directly influenced, as reported by Saleh (2004).


2004 ◽  
Vol 49 (5-6) ◽  
pp. 199-205 ◽  
Author(s):  
B.U. Kim ◽  
C.H. Won ◽  
J.M. Rim

This research aimed to effectively remove high-concentration organic matter and nutrients from slurry-type swine waste using a combined upflow anaerobic sludge blanket reactor with the dissolved air flotation/aerobic submerged biofilm/anoxic/aerobic process. The upflow anaerobic sludge blanket reactor was operated at an organics volumetric loading rate of 3.2Ð6.1 kg COD/m3/day, and the removal rates of COD were 53.9-65.5%. The removal rate of COD of the overall process was more than 99%. In the aerobic submerged biofilm, over 95% of ammonium nitrogen was removed at a volumetric loading rate of 0.08-0.16 kg NH4+-N/m3/day. The specific denitrification rate was 0.257 g NO3-N/g MLVSS/day and the removal rate of total nitrogen was 86.7%. Phosphorus was removed by flocculation in the dissolved air flotation process, and 0.16 g of PO4-P was removed by 1 g of ferric ion.


2020 ◽  
Author(s):  
Gede H Cahyana

Telah dikembangkan reaktor anaerob kecepatan tinggi (high rate) yang merupakan modifikasi reaktor konvensional. Di antaranya berupa (bio)reaktor pertumbuhan tersuspensi (contoh: UASB, Upflow Anaerobic Sludge Blanket) dan reaktor pertumbuhan lekat (Fixed Bed atau Biofilter, Fluidized Bed, Expanded Bed, Rotating Biodisc dan Baffled Reactor). Kedua tipe reaktor di atas memiliki sejumlah kelebihan dan kekurangan. Untuk mengoptimalkan nilai positifnya (terutama untuk keperluan desain) maka reaktor tersebut, pada penelitian ini, disusun menjadi satu urutan yang disebut Reaktor Hibrid Anaerob (Rehan) yakni UASB di bawah dan AF di atasnya. Lebih lanjut, penelitian ini diharapkan dapat memberikan informasi tentang kinerja Rehan dalam mengolah air limbah (substrat) yang konsentrasi zat organiknya (COD) sangat tinggi dan suatu model matematika yang dapat mewakili reaktor tersebut.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 383-390 ◽  
Author(s):  
J. E. Teer ◽  
D. J. Leak ◽  
A. W. L. Dudeney ◽  
A. Narayanan ◽  
D. C. Stuckey

The presence of small amounts of iron (&gt;0.013% Fe) in sand creates problems in the manufacture of high quality glass. Removal by hot sulphuric acid is possible, but creates environmental problems, and is costly. Hence organic acids such as oxalic have been investigated since they are effective in removing iron, and can be degraded anaerobically. The aim of this work was to identify key intermediates in the anaerobic degradation of oxalate in an upflow anaerobic sludge blanket reactor (UASB) which was removing iron from solution in the sulphide form, and to determine the bacterial species involved. 2-bromoethanesulfonic acid (BES) and molybdenum were selected as suitable inhibitors for methanogenic and sulphate reducing bacteria (SRB) respectively. 40mM molybdenum was used to inhibit the SRB in a reactor with a 12hr HRT. Total SRB inhibition took place in 20 hrs, with a complete breakthrough of influent sulphate. The lack of an immediate oxalate breakthrough confirmed Desulfovibrio vulgaris subspecies oxamicus was not the predominant oxalate utilising species. Nevertheless, high concentrations of molybdenum were found to inhibit oxalate utilising bacteria in granular reactors but not in suspended population reactors; this observation was puzzling, and at present cannot be explained. Based on the intermediates identified, it was postulated that oxalate was degraded to formate by an oxalate utilising bacteria such as Oxalobacter formigenes, and the formate used by the SRBs to reduce sulphate. Acetate, as a minor intermediate, existed primarily as a source of cell carbon for oxalate utilising bacteria. Methanogenic inhibition identified that 62% of the CH4 in the reactor operated at 37°C originated from hydrogenotrophic methanogenesis, whilst this figure was 80% at 20°C. Possible irreversible effects were recorded with hydrogenotrophic methanogens.


2021 ◽  
Vol 148 ◽  
pp. 106012
Author(s):  
Achiraya Jiraprasertwong ◽  
Pattaratorn Karnchanapaisal ◽  
Kessara Seneesrisakul ◽  
Pramoch Rangsunvigit ◽  
Sumaeth Chavadej

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Jeremiah Chimhundi ◽  
Carla Hörstmann ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.


Sign in / Sign up

Export Citation Format

Share Document