scholarly journals New composites from waste: iron ore, pulp, lime, and concrete

Author(s):  
Cleber Luis Pedroso ◽  
Vsévolod Mymrine ◽  
Elizabete Yukiko Nakanishi Bavastri ◽  
Daniela Evaniki Pedroso ◽  
Alfredo Iarozinski Neto ◽  
...  

This research aimed at the development of new composites for civil construction using only industrial waste, namely, iron ore tailings (IOT), pulp production waste (PPW), lime production waste (LPW), and concrete waste (CW). The characterization of raw materials was carried out through particle size, specific mass, hydrogen potential (pH), loss on ignition (LOI) tests, and scanning electron microscopy (SEM); and, it was analyzed axial compression resistance and SEM in the developed composites. The specimens for the resistance test were molded, always using the same four types of residues in the mixture, with only water addition and no other type of binder. The residues proportions used were, in percentage, 10% to 40% of IOT and PPW, 25 to 30% of the LPW, and 15% to 25% of CW, distributed in 19 different compositions, that is, the proportions' variation of the residues in each specimen. The specimens were tested at the ages of 3, 7, 14, 28, 60, 90, 180, 365, and 720 days of cure. The results indicated a slight increase in resistance with increasing curing time, with emphasis on compositions 16 and 17, whose 28-day axial compression resistance reached 4.07MPa and 6.92MPa, respectively. In these two compositions (16 and 17), the formation of new structures was observed in the materials due to the neutralization and dissolution of the surfaces, as the alkalinity gradually decreased over time, with the hydrogen potential (pH) around 7.50 that, consequently caused the synthesis of new amorphous and crystalline formations. In this context, the studies allowed to conclude that the association of industrial residues has potential use as civil construction materials, for instance, in concrete artifacts, besides contributing to the reduction of finite natural resources extraction. It also provides a correct destination for the waste disposed of inappropriately, that constantly menaces the environment and the society that lives around it.

2021 ◽  
Author(s):  
Vsevolod Mymrin ◽  
Ana Povaluk ◽  
Luana Cechin ◽  
Monica A. Avanci ◽  
Cleber L. Pedroso ◽  
...  

Abstract To prevent environment pollution by hazardous industrial dumps of iron ore treatment sludge, concrete production/demolition debris and lime production waste sustainable cement-less construction materials were developed for substitution of traditional natural raw components excavated in careers, irreversibly destroying natural bonds. Their ​​ axial resistance values on the 3rd day of hydration were till 2.34 MPa, on the 28th day - up to 3.94 MPa, on the 180th day 8.40 MPa and on the 365th day 10.22 MPa. The expanding coefficient on the 3rd day were till 2.13%, 2.51% on the 28th day, and on the 365th day 2.22%. Water absorption on the 28th day was 7.17 - 9.32% and decreases to 6.26 - 8.64% on the 90th day. All these characteristics correspond to the Brazilian norms. The physical - chemical processes of materials’ structures formation included alkaline dissociation of solid particles’ surface, with sol appearing and densification till transition to gel. Long-lasting gel compaction and densification to stone-like condition made its structure similar to natural rock materials - silica, opal, obsidian, perlite, pumice, amber, flask, etc. They can be used for production of road bases, concrete blocks and solid unburned bricks, among other sustainable construction materials.


2019 ◽  
Vol 212 ◽  
pp. 202-209 ◽  
Author(s):  
Vsevolod Mymrin ◽  
Andrea Molinetti ◽  
Kirill Alekseev ◽  
Monica A. Avanci ◽  
Walderson Klitzke ◽  
...  

2015 ◽  
Vol 1088 ◽  
pp. 656-659
Author(s):  
Ivaldo D. Valarelli ◽  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.


2019 ◽  
Vol 73 (4) ◽  
pp. 265-274
Author(s):  
Slavica Mihajlovic ◽  
Zivko Sekulic ◽  
Jovica Stojanovic ◽  
Vladan Kasic ◽  
Iroslav Sokic ◽  
...  

Quality of raw materials, including quartz sand and quartzite, varies from one deposit to another. Furthermore, the material quality determines in which industrial branches it can be used after certain preparation processes. Potential applications of quartz raw materials are: in the construction and refractory industry, ceramics and glass industry, then in metallurgy, foundry and also in production of water treatment filters. Geological investigations of the central Serbia region, in the Rekovac municipality, resulted in identification of occurrence of quartz sand ("Ursula") and quartzite ("Velika Krusevica"). Preliminary laboratory tests and characterization of the quartz sand size fraction -0.63+0.1 mm confirmed the possibility of applying this size fraction in the construction materials industry, while the quartzite can be used in refractory, glass and metallurgy industries. After determining the geological reserve of quartz sand "Ursula" and quartzite "Velika Krusevica", detailed investigations are required. Quality conditions from the aspect of chemical composition and physical properties of quartz sand and quartzite are mostly clearly defined by a special standard for this purpose. On the other hand, there are also application areas where standards does not exist, but users define their quality conditions. This example is with the application of quartz sand in the production of water glass. Chemical composition as well is not always the determining factor for the application of quartz raw material. For example, for quartz sand used for sandblasting, grain form is essential. From the economic analysis point of view, the prices of quartz raw materials vary depending on their chemical and physical properties. After all, what needs to be pointed out is the fact that these raw materials are very widespread in nature and that their exploitation is quite simple. After the raw material is excavated, it is stored and further sieved, washed, dried and processed according to customer requirements. All of these processes are cheaper than preparing, for example, limestone, and significaly cheaper than preparation of metal ores.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Elena Marrocchino ◽  
Chiara Telloli ◽  
Carmela Vaccaro

This paper presents a chemical-mineralogical characterization of construction materials from medieval Renaissance buildings of Ferrara (NE Italy) to provide an insight into the nature and provenance of the raw materials used. Biagio Rossetti was an Italian architect and urbanist from the city of Ferrara. From 1483, he was the architect of the Duke of Ferrara Ercole I d’Este who in 1492 assigned him the project of enlarging the city of Ferrara. Biagio Rossetti is still famous because he designed and built many notable palaces and churches in Ferrara, e.g., the Palazzo Roverella, the monastery of Santa Maria delle Grazie and the renovation of the church of San Andrea. To date, only the first two historic buildings are still in use and consequently restored, while the church of San Andrea has been abandoned over the years and the remains have been subject to decay. Different kinds of samples (bricks, cotto, plaster and mortars) were collected from the three sampling sites and analyzed in X-ray fluorescence and X-ray diffractometer to investigate the construction materials through the evaluation of their chemical composition, historic building activity and degradation degree. These investigations should provide knowledge useful for restoration and conservation processes.


2019 ◽  
Vol 49 ◽  
pp. 137-147
Author(s):  
Laura Ferrans ◽  
Yahya Jani ◽  
Ling Gao ◽  
William Hogland

Abstract. Millions of tons of bottom sediments are dredged annually all over the world. Ports and bays need to extract the sediments to guarantee the navigation levels or remediate the aquatic ecosystem. The removed material is commonly disposed of in open oceans or landfills. These disposal methods are not in line with circular-economy goals and additionally are unsuitable due to their legal and environmental compatibility. Recovery of valuables represents a way to eliminate dumping and contributes towards the sustainable extraction of secondary raw materials. Nevertheless, the recovery varies on a case-by-case basis and depends on the sediment components. Therefore, the first step is to analyse and identify the sediment composition and properties. Malmfjärden is a shallow semi-enclosed bay located in Kalmar, Sweden. Dredging of sediments is required to recuperate the water level. This study focuses on characterizing the sediments, pore water and surface water from the bay to uncover possible sediment recovery paths and define the baseline of contamination in the water body. The results showed that the bay had high amounts of nitrogen (170–450 µg L−1), leading to eutrophication problems. The sediments mainly comprised small size particle material (silt, clay and sand proportions of 62 %–79 %, 14 %–20 %, 7 %–17 %, respectively) and had a medium–high level of nitrogen (7400–11 000 mg kg−1). Additionally, the sediments had little presence of organic pollutants and low–medium concentration of metals or metalloids. The characterization of the sediments displays a potential use in less sensitive lands such as in industrial and commercial areas where the sediments can be employed as construction material or as plant-growing substrate (for ornamental gardens or vegetation beside roads).


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Sign in / Sign up

Export Citation Format

Share Document