scholarly journals Performance Analysis of Multiple Access for Secondary Users in The Spectrum Sensing Cognitive Radio

2016 ◽  
Vol 21 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Seung Geun Hong ◽  
Jae Hong Lee
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 241 ◽  
Author(s):  
Muhammad Shafiq ◽  
Maqbool Ahmad ◽  
Muhammad Khalil Afzal ◽  
Amjad Ali ◽  
Azeem Irshad ◽  
...  

Internet-of-Things (IoT) enabling technologies such as ZigBee, WiFi, 6LowPAN, RFID, Machine-to-Machine, LTE-Advanced, etc. depend on the license-free Industrial Scientific and Medical (ISM) bands for the Internet. The proliferation of IoT devices is not only anticipated to create a huge amount of congestion in the near future, but even now the unlicensed spectrum is not enough in the ISM bands. Towards this end, Cognitive Radio (CR) technology can resolve the spectrum shortage issue since CR users can opportunistically exploit white spaces in licensed channels of the adjacent wireless systems. In CR networks, it is critical to coordinate spectrum access among Secondary Users (SUs) while protecting priority rights of Primary Users (PUs). Therein, SUs need to take good care of hidden PUs in order to avoid harmful interference. Further, a densely deployed CR network can compromise spectrum sensing quality and certainty of the results when a large number of SUs contends to access the same channel. Therefore, based on the vulnerable sensing results, SUs can cause interference to the PUs. In this paper, we first investigate the leading issues and then propose a novel Handshake Sense Multiple Access with Collision Avoidance (HSMA/CA) protocol for CR-based IoT networks. Our proposed HSMA/CA scheme resolves hidden primary terminal problem and maintains sufficient priority rights to PUs in a densely distributed network. In addition, we optimize the spectrum sensing period to maximize the system performance by maintaining peculiarities in the sensing operation like false alarm and misdetection. To evaluate the performance of HSMA/CA, we have analyzed the protocol through the Markov chain model in terms of throughput and verify its accuracy by simulations. Simulation results show that our scheme is suitable for non-collaborative densely deployed CR-based IoT networks.


2021 ◽  
Author(s):  
BALACHANDER T ◽  
Mukesh Krishnan M B

Abstract In the recent past, efficient cooperative spectrum sensing and usage are playing a vital role in wireless communication because of the significant progress of mobile devices. There is a recent surge and interest on Non-Orthogonal Multiple Access (NOMA) focused on communication powered by wireless mode. In modern research, more attention has been focused on efficient and accurate Non-Orthogonal Multiple Access (NOMA). NOMA wireless communication is highly adapted with Cognitive Radio Network (CRN) for improving performance. In the existing cognitive radio network, the secondary users could be able to access the idle available spectrum while primary users are engaged. In the traditional CRN, the primary user’s frequency bands are sensed as free, the secondary users could be utilized those bands of frequency resources. In this research, the novel methodology is proposed for cooperative spectrum sensing in CRN for 5G wireless communication using NOMA. The higher cooperative spectrum efficiency can be detected in the presence of channel noise. Cooperative spectrum sensing is used to improve the efficient utilization of spectrum. The spectrum bands with license authority primary user are shared by Secondary Users (SU) by simultaneously transmitting information with Primary Users (PU). The cooperative spectrum sensing provides well under the circumstances that the different channel interference to the primary user can be guaranteed to be negligible than an assured thresholding value. The Noisy Channel State Information (CSI) like AWGN and Rayleigh fading channels are considered as wireless transmission mediums for transmitting a signal using Multiple-Input-Multiple-Output (MIMO) NOMA to increase the number of users. The proposed NOMA is fascinated with significant benefits in CRN is an essential wireless communication method for upcoming 5G technology. From experimental results it has been proved that the novel methodology performance is efficient and accurate than existing methodologies by showing graphical representations and tabulated parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
S. Tephillah ◽  
J. Martin Leo Manickam

Security is a pending challenge in cooperative spectrum sensing (CSS) as it employs a common channel and a controller. Spectrum sensing data falsification (SSDF) attacks are challenging as different types of attackers use them. To address this issue, the sifting and evaluation trust management algorithm (SETM) is proposed. The necessity of computing the trust for all the secondary users (SUs) is eliminated based on the use of the first phase of the algorithm. The second phase is executed to differentiate the random attacker and the genuine SUs. This reduces the computation and overhead costs. Simulations and complexity analyses have been performed to prove the efficiency and appropriateness of the proposed algorithm for combating SSDF attacks.


An efficient bandwidth allocation and dynamic bandwidth access away from its previous limits is referred as cognitive radio (CR).The limited spectrum with inefficient usage requires the advances of dynamic spectrum access approach, where the secondary users are authorized to utilize the unused temporary licensed spectrum. For this reason it is essential to analyze the absence/presence of primary users for spectrum usage. So spectrum sensing is the main requirement and developed to sense the absence/ presence of a licensed user. This paper shows the design model of energy detection based spectrum sensing in frequency domain utilizing Binary Symmetric Channel (BSC) ,Additive white real Gaussian channel (AWGN), Rayleigh fading channel users for 16-Quadrature Amplitude Modulation(QAM) which is utilized for the wide band sensing applications at low Signal to noise Ratio(SNR) level to reduce the false error identification. The spectrum sensing techniques has least computational complexity. Simulink model for the energy detection based spectrum sensing using frequency domain in MATLAB 2014a.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 335
Author(s):  
Shweta Alpna ◽  
Amrit Mukherjee ◽  
Amlan Datta

The proposed work illustrates a novel technique for cooperative spectrum sensing in a cognitive radio (CR) network. The work includes an approach of identifying secondary users (SUs) based on Hierarchical Maximum Likelihood (HML) technique followed by Vector Quantization. Initially, the arrangement of the SUs are been observed using HML with respect to a spatial domain and then the active SUs among them are identified using VQ. The approach will not only save the energy, but the decision of the real-time and dynamic cooperative communication network becomes more accurate as we can predict the behavior of SUs movement and spectrum sensing by each individual SU at that particular  place. The results and simulations of the real-time experiment justifies with the proposed approach. 


2021 ◽  
Vol 10 (4) ◽  
pp. 2046-2054
Author(s):  
Mohammed Mehdi Saleh ◽  
Ahmed A. Abbas ◽  
Ahmed Hammoodi

Due to the rapid increase in wireless applications and the number of users, spectrum scarcity, energy consumption and latency issues will emerge, notably in the fifth generation (5G) system. Cognitive radio (CR) has emerged as the primary technology to address these challenges, allowing opportunist spectrum access as well as the ability to analyze, observe, and learn how to respond to environmental 5G conditions. The CR has the ability to sense the spectrum and detect empty bands in order to use underutilized frequency bands without causing unwanted interference with legacy networks. In this paper, we presented a spectrum sensing algorithm based on energy detection that allows secondary user SU to transmit asynchronously with primary user PU without causing harmful interference. This algorithm reduced the sensing time required to scan the whole frequency band by dividing it into n sub-bands that are all scanned at the same time. Also, this algorithm allows cognitive radio networks (CRN) nodes to select their operating band without requiring cooperation with licensed users. According to the BER, secondary users have better performance compared with primary users.


Sign in / Sign up

Export Citation Format

Share Document