Key drivers influencing the commercialization of ethanol-based biorefineries

1969 ◽  
Vol 16 (3) ◽  
Author(s):  
Anuj K Chandel ◽  
Om V Singh ◽  
Gajula Chandrasekhar ◽  
Linga Venkateswar Rao ◽  
Mangamoori Lakshmi Narasu

The imposition of ethanol derived from biomass for blending in gasoline would make countries less dependent on current petroleum sources, which would save foreign exchange reserves, improve rural economies and provide job opportunities in a clean and safe environment. The key drivers for successful commercial ethanol production are cheap raw materials, economic pretreatment technologies, in-house cellulase production with high and efficient titers, high ethanol fermentation rates, downstream recovery of ethanol and maximum by-products utilization. Furthermore, recent developments in engineering of biomass for increased biomass, down-regulation of lignin synthesis, improved cellulase titers and re-engineering of cellulases, and process integration of the steps involved have increased the possibility of cheap bioethanol production that competes with the price of petroleum. Recently, many companies have come forward globally for bioethanol production on a large scale. It is very clear now that bioethanol will be available at the price of fossil fuels by 2010. This article intends to provide insight and perspectives on the important recent developments in bioethanol research, the commercialization status of bioethanol production, the step-wise cost incurred in the process involved, and the possible innovations that can be utilized to reduce the cost of ethanol production.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hossain Zabed ◽  
Golam Faruq ◽  
Jaya Narayan Sahu ◽  
Mohd Sofian Azirun ◽  
Rosli Hashim ◽  
...  

Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially,Saccharomyces cerevisiae, though the bacterial speciesZymomonas mobilisis also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Su Yan ◽  
Yan Xu ◽  
Xiao-Wei Yu

AbstractThe filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.


2014 ◽  
pp. 97-104 ◽  
Author(s):  
Electo Eduardo Silv Lora ◽  
Mateus Henrique Rocha ◽  
José Carlos Escobar Palacio ◽  
Osvaldo José Venturini ◽  
Maria Luiza Grillo Renó ◽  
...  

The aim of this paper is to discuss the major technological changes related to the implementation of large-scale cogeneration and biofuel production in the sugar and alcohol industry. The reduction of the process steam consumption, implementation of new alternatives in driving mills, the widespread practice of high steam parameters use in cogeneration facilities, the insertion of new technologies for biofuels production (hydrolysis and gasification), the energy conversion of sugarcane trash and vinasse, animal feed production, process integration and implementation of the biorefinery concept are considered. Another new paradigm consists in the wide spreading of sustainability studies of products and processes using the Life Cycle Assessment (LCA) and the implementation of sustainability indexes. Every approach to this issue has as an objective to increase the economic efficiency and the possibilities of the sugarcane as a main source of two basic raw materials: fibres and sugar. The paper briefly presents the concepts, indicators, state-of-the-art and perspectives of each of the referred issues.


Author(s):  
Tuan-Dung Hoang ◽  
Nhuan Nghiem

Ethanol produced from various biobased sources (bioethanol) has been gaining high attention lately due to its potential to cut down net emissions of carbon dioxide while reducing burgeoning world dependence on fossil fuels. Global ethanol production has increased more than six-fold from 18 billion liters at the turn of the century to 110 billion liters in 2019 (1,2). Sugar cane and corn have been used as the major feedstocks for ethanol production. Lignocellulosic biomass has recently been considered as another potential feedstock. This paper reviews recent developments and current status of commercial production of ethanol across the world. The review includes the ethanol production processes used for each type of feedstock, both currently practiced at commercial scale and newly developed technologies, and production trends in various regions and countries in the world.


2017 ◽  
Vol 8 (3) ◽  
pp. 206-211
Author(s):  
Thi Mai Thao Pham

To evaluate CO2 emission mitigation potential and cost effectiveness of rice husk utilization, Life Cycle Analysis was conducted for 9 scenarios. The results showed that, gasification is the most efficient CO2 mitigation. From cost analysis, the cost mitigation can be achieved by replacing the current fossil fuels in cooking scenarios. Among the power generation scenarios, it was found that 30MW combustion and 5MW gasification power generations were the most economically-efficient scenarios. The briquette combustion power generation appeared less cost-competitive than direct combustion, whilst the large-scale gasification scenarios and the pyrolysis scenarios give the increase in cost from the baseline. From the viewpoints of both CO2 and cost, it was indicated that the win-win scenarios can be the rice husk use for cooking, for large-scale combustion power generation, and for small-scale gasification. Để đánh giá tiềm năng giảm thiểu phát thải CO2 và hiệu quả chi phí của việc sử dụng trấu, phương pháp đánh giá vòng đời sản phẩm đã được thực hiện cho 9 kịch bản. Kết quả cho thấy, khí hóa trấu để sản xuất điện có tiềm năng giảm phát sinh khí CO2 nhiều nhất. Kết quả phân tích chi phí cho thấy việc giảm thiểu chi phí có thể đạt được khi thay thế sử dụng nhiên liệu hóa thạch trong kịch bản dùng trấu cho nấu ăn. Giữa các kịch bản về sản xuất điện, hiệu quả kinh tế cao nhất trong trường hợp đốt trực tiếp trấu để sản xuất điện ở quy mô công xuất lớn (30MW) và khí hóa ở quy mô trung bình (5MW). Trường hợp dùng củi trấu không mang lại hiệu quả kinh tế so với dùng trực tiếp trấu để phát điện. Hai trường hợp dùng trấu để sản xuất dầu sinh học và khí hóa gas công suất lớn (30MW) cho thấy chi phí tăng cao so với điều kiện biên. Kịch bản cho kết quả khả thi về hiệu quả kinh tế và giảm phát thải CO2 là dùng trấu để nấu ăn, đốt trực tiếp để phát điện công suất lớn và khí hóa công suất trung bình.


2020 ◽  
Vol 26 (2) ◽  
pp. 21-29
Author(s):  
Valentina Nikolić ◽  
Slađana Žilić ◽  
Milica Radosavljević ◽  
Marijana Simić

Bioethanol is a biofuel that is mostly used as a replacement for fossil fuels worldwide with yearly production reaching nearly 110 billion liters in 2019. Trends of producing this alternative fuel are rising and maize is considered as one of the best renewable raw materials for the production of fuel ethanol due to the high content of starch in the grain. Taking into account that Serbia is one of the most prominent maize producers in Europe, the surpluses of this crop could be directed towards bioethanol production. Even though there is no organized production and consumption of bioethanol as an automotive fuel in Serbia, the Serbian Government has recently introduced some new regulations regarding biofuels. However, due to the reduction of economic activities since the onset of COVID-19 pandemic in 2020, the global demand for crude oil has fallen sharply, negatively affecting the gasoline demand, and thus for bioethanol, which makes the future of this alternative fuel production notably uncertain.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 667 ◽  
Author(s):  
Avraam Roussos ◽  
Nikiforos Misailidis ◽  
Alexandros Koulouris ◽  
Francesco Zimbardi ◽  
Demetri Petrides

Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements for product purification. In the first scenario where the product titer was 22 g/L, the energy demand for downstream processing was 15.8 MJ/L isobutanol and the unit production cost of isobutanol was $2.24/L. The integrated product removal by vacuum stripping implemented in the second scenario was assumed to improve the isobutanol titer to 50 g/L. In this case, the energy demand for the product removal (electricity) and downstream processing were 1.8 MJ/L isobutanol and 10 MJ/L isobutanol, respectively, and the unit production cost was reduced to $1.42/L. The uncertainty associated with the choice of modeling and economic parameters was investigated by Monte Carlo simulation sensitivity analysis.


2016 ◽  
Vol 34 ◽  
pp. 75-87
Author(s):  
Mohammad Khairul Islam ◽  
Mohammed Forhad Uddin ◽  
Md M Alam

In this study, we formulate mixed integer program for manufacturer and retailer system of poultry firm in Bangladesh that is one of the most promising sectors to increase Gross Domestic Product (GDP) growth rate plus equitable distribution through arranging food security as well as ensuring self-employment, creating purchasing power and reducing poverty at a large scale. From the survey, it has observed that the selling price of eggs and chicken fluctuate depending on the natural calamities. We have made a question survey on some poultry firm in the district of Mymensingh and Gazipur. This paper maximized the profit and minimizes the cost. The formulated mixed integer program has solved by branch and bound algorithm using A Mathematical Programming Language (AMPL). It has observed that the profit and selling price have very good relationship with production cost and raw materials cost but no significant relation with fixed cost.GANIT J. Bangladesh Math. Soc.Vol. 34 (2014) 75-87


Subject Slow cuts to global steel overcapacity. Significance In 2015, global steel output fell 2.8% compared to 2014, reaching 1.62 billion tonnes. China's production dropped by 2.3% to 804 million tonnes. In 2015, European benchmark steel prices fell by 27%, from 480 dollars/tonne to 350 dollars/tonne, while Chinese prices suffered a 41% drop, from 440 to 260 dollars/tonne. Margins at many steel-making groups contracted, as steel prices fell faster than the cost of raw materials. Large-scale job losses intensified in Europe, with the United Kingdom and Spain enduring the most of the capacity cuts. Impacts Latin American production could suffer from Asian competition unless sector-specific safeguards are introduced. Renewed dollar appreciation could make dollar-denominated debt unsustainable for many emerging-market steel-makers. BRICS exporters will suffer tariffs imposed by the US Department of Commerce. India will remain the industry's best hope for growth, due to its urbanisation and still low per capita steel consumption.


Author(s):  
Helena SKORUK

The article analyzes the relevance of bioethanol production in Ukraine. The possibility of replacing traditional types of fuel with alternatives and reducing the purchase of imported energy resources is explored. The cost of raw materials of energy crops in one ton of bioethanol is calculated. Estimates of the differences in the calculation of the economic efficiency of different crops for the production of bioethanol. The essence of biofuel use and features of its use in Ukraine are revealed. The article uses statistical data on crop yields at agricultural enterprises of Ukraine, data on production capacities of processing enterprises, and a comparison of the cost of bioethanol of the most powerful producer countries of this type of biofuel.


Sign in / Sign up

Export Citation Format

Share Document