Induced Pluripotent Stem Cells: Inventors turning into competitors

2017 ◽  
Vol 22 (4) ◽  
Author(s):  
Pratap Devarapalli ◽  
Swapnil Laxman Bhalke ◽  
Neelam Sudhir Dharmadhikari ◽  
Vandana Mishra ◽  
Neha Mago ◽  
...  

Induced Pluripotent Stem Cells (IPSCs) are a kind of adult cells that have been genetically reprogrammed to become different cell types. Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem cells. IPSCs technology was pioneered by Shinya Yamanaka from Kyoto University. This breakthrough has inspired researchers to start working around IPSC technology. James Thomson from University of California has developed IPS cell lines derived from Human Somatic Cells. Subsequently, he also established a large scale human IPSC manufacturing company named Cellular Dynamics International. Thus, increasing interest in the commercial exploitation of IPSCs patents has lead us to look into the patent portfolios of top three patent assignees in IPSC technology. In this study, we have discussed technological patent trends and multiple factors which reflect the competitive scenario between the top assignees of IPSC technology. Our conclusions suggest that Kyoto University led by inventor Shinya Yamanaka is the leader of IPSC technology. However, patent-product linkage analysis suggests that Cellular Dynamics International led by inventor James Thomson may surpass Kyoto University in near future.

Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Author(s):  
Moning Liu ◽  
Lixia Zhao ◽  
Zixin Wang ◽  
Hong Su ◽  
Tong Wang ◽  
...  

Pluripotent stem cells (PSCs) have the potential to differentiate to all cell types of an adult individual and are useful for studying mammalian development. Establishing induced pluripotent stem cells (iPSCs) capable of expressing pluripotent genes and differentiating to three germ layers will not only help to explain the mechanisms underlying somatic reprogramming but also lay the foundation for the establishment of sheep embryonic stem cells (ESCs) in vitro. In this study, sheep somatic cells were reprogrammed in vitro into sheep iPSCs with stable morphology, pluripotent marker expression, and differentiation ability, delivered by piggyBac transposon system with eight doxycycline (DOX)-inducible exogenous reprogramming factors: bovine OCT4, SOX2, KLF4, cMYC, porcine NANOG, human LIN28, SV40 large T antigen, and human TERT. Sheep iPSCs exhibited a chimeric contribution to the early blastocysts of sheep and mice and E6.5 mouse embryos in vitro. A transcriptome analysis revealed the pluripotent characteristics of somatic reprogramming and insights into sheep iPSCs. This study provides an ideal experimental material for further study of the construction of totipotent ESCs in sheep.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 703 ◽  
Author(s):  
Rafael Soares Lindoso ◽  
Tais H. Kasai-Brunswick ◽  
Gustavo Monnerat Cahli ◽  
Federica Collino ◽  
Adriana Bastos Carvalho ◽  
...  

Omics approaches have significantly impacted knowledge about molecular signaling pathways driving cell function. Induced pluripotent stem cells (iPSC) have revolutionized the field of biological sciences and proteomics and, in particular, has been instrumental in identifying key elements operating during the maintenance of the pluripotent state and the differentiation process to the diverse cell types that form organisms. This review covers the evolution of conceptual and methodological strategies in proteomics; briefly describes the generation of iPSC from a historical perspective, the state-of-the-art of iPSC-based proteomics; and compares data on the proteome and transcriptome of iPSC to that of embryonic stem cells (ESC). Finally, proteomics of healthy and diseased cells and organoids differentiated from iPSC are analyzed.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pengfei Ji ◽  
Sasicha Manupipatpong ◽  
Nina Xie ◽  
Yujing Li

Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.


2020 ◽  
Vol 26 (3) ◽  
pp. 153-161
Author(s):  
Nemanja Rančić ◽  
Sanja Raščanin ◽  
Milijana Miljković ◽  
Mirjana Jovanović

Induced Pluripotent Stem Cells (iPSCs) are a type of pluripotent stem cells generated by reprogramming an adult somatic cell genome to the stage of a pluripotent stem cell in vitro by inducing a forced expression of specific transcription factors that are important for the maintenance of pluripotency. The iPSCs seem to be very similar to Embryonic Stem Cells (ESCs) in terms of morphology, cell surface markers and gene expression levels, but recent studies have demonstrated some differences between the two cell types. However, iPSCs might have potential application in regenerative medicine, transplantation, drug testing, disease modelling, and avoidance of tissue rejection and with less ethical concern than ESCs. This paper aims to present the most important characteristics of iPSCs which have therapeutic significance.


2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Sign in / Sign up

Export Citation Format

Share Document