scholarly journals Bioremediation of soil polluted with oil

2021 ◽  
Vol 26 (51) ◽  
pp. 77-81
Author(s):  
Vesna Teofilović ◽  
Srđan Miletić ◽  
Milica Živković ◽  
Nataša Stojić ◽  
Mira Pucarević ◽  
...  

Microplastics have reached all corners of our planet, including soil and water. Plastic-degrading bacteria are seen as a promising, environmentally friendly tool for the bioremediation of soil polluted with microplastics. The petroleum origin of plastics makes them candidates for bioremediation analogous to the bioremediation of soil polluted with oil and its derivatives. A mud pit, located near the village of Turija, used for mud formation for the lubrication of drill pipes for drilling rigs, ended up polluted with oil and its derivatives. It was bioremediated using the in situ procedure. The content of n-hexane extractable substance, total petroleum hydrocarbon, dry substance, and loss on ignition were analyzed.

Author(s):  
Mariana MARINESCU ◽  
Anca LACATUSU ◽  
Eugenia GAMENT ◽  
Georgiana PLOPEANU ◽  
Vera CARABULEA

Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH) removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 192
Author(s):  
Artem Demenev ◽  
Nikolay Maksimovich ◽  
Vadim Khmurchik ◽  
Gennadiy Rogovskiy ◽  
Anatoliy Rogovskiy ◽  
...  

Contamination of groundwater by petroleum hydrocarbons is a widespread environmental problem in many regions. Contamination of unsaturated and saturated zones could also pose a significant risk to human health. The main purpose of the study was to assess the efficiency of biodegradation of total petroleum hydrocarbon (TPH) in situ, in an area with loam and sandy loam soils, and to identify features and characteristics related to groundwater treatment in an area with a persistent flow of pollutants. We used methods of biostimulation (oxygen as stimulatory supplement) and bioaugmentation to improve water quality. Oxygen was added to the groundwater by diffusion through silicone tubing. The efficiency of groundwater treatment was determined by detailed monitoring. Implementation of the applied measure resulted in an average reduction in TPH concentration of 73.1% compared with the initial average concentration (4.33 mg/L), and in the local area, TPH content was reduced by 95.5%. The authors hope that this paper will contribute to a better understanding of the topic of groundwater treatment by in situ biodegradation of TPH. Further studies on this topic are particularly needed to provide more data and details on the efficiency of groundwater treatment under adverse geological conditions.


2020 ◽  
Author(s):  
Xiaokang Li ◽  
Jinling Li ◽  
Chengtun Qu ◽  
Tao Yu ◽  
Mingming Du

Abstract The clay with high oil content form soil lumps, which is hard for microbes to repair. In this paper, the bioremediation + biostimulation was applied to improve the bioremediation effect of the soil with high oil content, that modified by local cow dung and sandy soil, the ecological toxicity of the soil after restoration was further analyzed. After 53 days of bioremediation, the degradation efficiency with respect to the total petroleum hydrocarbon (TPH) content reached 76.9% ± 2.2%; the soil bacterial content reached 4.9 × 107 CFU/g soil and the results were better than those in the natural attenuation M1group of experimental soils. The relative abundances of petroleum-degrading bacteria added to M5 remained high (Achromobacter 9.44%, Pseudomonas 31.06%, and Acinetobacter 14.11%), and the proportions of some other indigenous bacteria (Alcanivorax and Paenibacillus) also increased. The toxicity of the bioremediated soil was reduced by seed germination and earthworm survival experiments.


2018 ◽  
Vol 59 (2) ◽  
pp. 166-180
Author(s):  
Wael S. El-Sayed ◽  
Yasser Elbahloul ◽  
Mohamed E. Saad ◽  
Ahmed M. Hanafy ◽  
Abdelrahman H. Hegazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document