scholarly journals Effect of maximum voluntary isometric contraction of antagonist muscles in max torque and rate of torque development of agonist muscles in trained and untrained women

2013 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Despoina Tserepi ◽  
Anastasia Papavasileioy ◽  
Chrystala Panteli ◽  
Xenofontos Anthi ◽  
Eleni Bassa ◽  
...  
2013 ◽  
Vol 38 (12) ◽  
pp. 1196-1205 ◽  
Author(s):  
Geoffrey A. Power ◽  
Brian H. Dalton ◽  
Charles L. Rice ◽  
Anthony A. Vandervoort

Following repetitive lengthening contractions, power (the product of torque and velocity) is impaired during shortening contractions. However, the relative contribution of each component to power loss and the underlying factors are unclear. We investigated neuromuscular properties of the dorsiflexors in 8 males (27 ± 3 years) and 8 females (26 ± 4 years) for a potential sex-related difference before, during, and after 150 unaccustomed maximal lengthening actions. Velocity-dependent power was determined from shortening contractions at 8 levels (1 N·m to 70% of maximum voluntary isometric contraction (MVC)) before, after, and throughout recovery assessed at 0–30 min, 24 h, and 48 h. Immediately following task termination, both sexes displayed similar impairments of 30%, 4%, and 10% in MVC torque, shortening velocity, and overall peak power, respectively (P < 0.05). Peak rate of isometric torque development (RTD) was reduced by 10% in males, but females exhibited a 35% reduction (P < 0.05). Rate of torque development for the MVC remained depressed in both sexes throughout the 30 min recovery period; however, the RTD returned to normal by 24 h in males but did not recover by 48 h in females. Power was reduced preferentially at higher loads (i.e., 60% MVC), with a greater loss in females (65%) than males (45%). For lower loads (<20% MVC), power was impaired minimally (4%–8%; P < 0.05) and recovered within 30 min in both groups. The reduction in maximal angular velocity persisted until 30 min of recovery, and peak power did not recover until 24 h for both sexes. Unaccustomed lengthening contractions decreased power preferentially at higher loads, whereas peak power was reduced minimally owing to maintenance of maximal shortening velocity.


2020 ◽  
Vol 10 (7) ◽  
pp. 1557-1561
Author(s):  
Jaeho Yang ◽  
Yong Woo An ◽  
Eunwook Chang

The purpose of this study was to investigate relationships between knee extension torque (rate of torque development and peak torque) and quadriceps muscle thickness in healthy males and females. Thirty-six recreationally active and healthy individuals participated in the study. Portable ultrasound was used to image the dominant side of each quadriceps muscle (rectus femoris, vastus intermedius, vastus lateralis, vastus medialis, vastus medialis oblique). After muscle thickness measurement, participants performed knee extension maximal voluntary isometric contraction. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after onset of torque generation and peak torque was defined as maximum torque during maximal voluntary isometric contraction trials. A higher RTD50 value was found to be associated with greater vastus intermedius and vastus medialis oblique thicknesses, and a higher RTD200 with the thickness of all quadriceps muscles (p < 0.05). Finally, vastus medialis and vastus medialis oblique thicknesses were associated with a higher peak torque (p < 0.05). According to these results, the findings suggest to coaches that vastus intermedius and vastus medialis oblique thicknesses are critical to torque development during the early phase of knee extension contraction (RTD50), which is essential for executing athletic tasks and preventing injuries.


Author(s):  
Matheus Henrique Maiolini Ducatti ◽  
Marina Cabral Waiteman ◽  
Ana Flávia Balotari Botta ◽  
Helder dos Santos Lopes ◽  
Neal Robert Glaviano ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2197
Author(s):  
Chia-Chi Yang ◽  
Po-Ching Yang ◽  
Jia-Jin J. Chen ◽  
Yi-Horng Lai ◽  
Chia-Han Hu ◽  
...  

Since there is merit in noninvasive monitoring of muscular oxidative metabolism for near-infrared spectroscopy in a wide range of clinical scenarios, the present study attempted to evaluate the clinical usability for featuring the modulatory strategies of sternocleidomastoid muscular oxygenation using near-infrared spectroscopy in mild nonspecific neck pain patients. The muscular oxygenation variables of the dominant or affected sternocleidomastoid muscles of interest were extracted at 25% of the maximum voluntary isometric contraction from ten patients (5 males and 5 females, 23.6 ± 4.2 years) and asymptomatic individuals (6 males and 4 females, 24.0 ± 5.1 years) using near-infrared spectroscopy. Only a shorter half-deoxygenation time of oxygen saturation during a sternocleidomastoid isometric contraction was noted in patients compared to asymptomatic individuals (10.43 ± 1.79 s vs. 13.82 ± 1.42 s, p < 0.001). Even though the lack of statically significant differences in most of the muscular oxygenation variables failed to refine the definite pathogenic mechanisms underlying nonspecific neck pain, the findings of modulatory strategies of faster deoxygenation implied that near-infrared spectroscopy appears to have practical potential to provide relevant physiological information regarding muscular oxidative metabolism and constituted convincing preliminary evidences of the adaptive manipulations rather than pathological responses of oxidative metabolism capacity of sternocleidomastoid muscles in nonspecific neck patients with mild disability.


2013 ◽  
Vol 115 (2) ◽  
pp. 167-175 ◽  
Author(s):  
H. S. Palmer ◽  
A. K. Håberg ◽  
M. S. Fimland ◽  
G. M. Solstad ◽  
V. Moe Iversen ◽  
...  

Strength training enhances muscular strength and neural drive, but the underlying neuronal mechanisms remain unclear. This study used magnetic resonance imaging (MRI) to identify possible changes in corticospinal tract (CST) microstructure, cortical activation, and subcortical structure volumes following unilateral strength training of the plantar flexors. Mechanisms underlying cross-education of strength in the untrained leg were also investigated. Young, healthy adult volunteers were assigned to training ( n = 12) or control ( n = 9) groups. The 4 wk of training consisted of 16 sessions of 36 unilateral isometric plantar flexions. Maximum voluntary isometric contraction torque was tested pre- and posttraining. MRI investigation included a T1-weighted scan, diffusion tensor imaging and functional MRI. Probabilistic fiber tracking of the CST was performed on the diffusion tensor imaging images using a two-regions-of-interest approach. Fractional anisotropy and mean diffusivity were calculated for the left and right CST in each individual before and after training. Standard functional MRI analyses and volumetric analyses of subcortical structures were also performed. Maximum voluntary isometric contraction significantly increased in both the trained and untrained legs of the training group, but not the control group. A significant decrease in mean diffusivity was found in the left CST following strength training of the right leg. No significant changes were detected in the right CST. No significant changes in cortical activation were observed following training. A significant reduction in left putamen volume was found after training. This study provides the first evidence for strength training-related changes in white matter and putamen in the healthy adult brain.


Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.


Sign in / Sign up

Export Citation Format

Share Document