scholarly journals Summer thermal comfort in Russian big cities (1966-2015)

2021 ◽  
Vol 25 (1) ◽  
pp. 35-41
Author(s):  
Pavel Konstantinov ◽  
Diana Tattimbetova ◽  
Mikhail Varentsov ◽  
Natalia Shartova

The main goal of the study is the assessment of modern bioclimatic conditions (1966-2015) for determining the level of comfort in large Russian cities based on the observations at the meteorological stations, including Physiological Equivalent Temperature (PET) for the main extent of thermal comfort. According to the distribution of thermal stress events (calculated for meteorological fix hours, 8 times per day) the authors created the comfort diagram for each city during daytime heat wave period and evaluated their comfort conditions. In the current research we are operating with WMO climatic data for eleven biggest cities of the Russian Federation: from the European part (Moscow, Saint-Petersburg, Ekaterinburg, Voronezh, Volgograd, Kazan, Nizhny Novgorod, Perm, Ufa) and from Siberia (Omsk and Krasnoyarsk). The most interesting result of the comparison of the long-period (50 years) urban trends (PET-index and Air Temperature) in different parts of Russia is its extraordinary cross-shaped form in Moscow (in other cities the trends lines are practically parallel to each other). It means that at the level of the average annual values, only in Moscow the PET index (and, hence, potentially the thermal stress) grows faster than the regional climate warms. In other cities this tendency is much weaker (N.Novgorod) or not significant. This interesting tendency is caused by both Moscow related urban planning dynamics in post-USSR period and by regional climate dynamics.

2019 ◽  
Vol 11 (5) ◽  
pp. 1355 ◽  
Author(s):  
Shi Yin ◽  
Werner Lang ◽  
Yiqiang Xiao ◽  
Zhao Xu

Traditional shophouse neighbourhoods (TSNs) in southern China respond well to the local hot and humid climate through proper street configurations and the integration of different shading strategies. Investigating the impact of shading strategies and configurations in TSNs on outdoor thermal comfort is valuable for guiding current urban design. Three street canyons in a TSN of Guangzhou with different shading strategies were selected as basic cases for microclimatic measurement in the summer season, i.e., alleys, streets with arcade for pedestrians, and streets with high-density greenery. After validating their simulation models in ENVI-met, five groups of parametric simulations were generated by varying the canyon aspect ratio (CHW), the canyon axis orientation, arcade proportion (AHW), and the tree-covered area (TCA). Using the physiological equivalent temperature (PET) to assess the above results, the correlative impact of different variations on pedestrian’s thermal comfort and their corresponding favourable ranges are summarized. The findings suggest that: (a) only in alleys and arcade streets, the pedestrian-level thermal comfort was significantly influenced by canyon axis orientation. (b) The thermal stress for pedestrians increased dramatically when the CHW was lower than 1.5 in alleys and 0.78 in boulevards (in TCA = 89%), while the CHW higher than 1 indicated a remarkable reduction on the PET for pedestrians in arcades. (c) The pedestrians started losing the protection from shading strategy to thermal stress when the AHW was higher than 1.33 (in canyon with CHW = 1) or the TCA was lower than 33% (in canyon with CHW = 0.78).


Author(s):  
Abdulrasaq Kunle Ayinla ◽  
Ilelabayo Ismail Adebisi ◽  
Olubunmi Adedayo Olaoye ◽  
Emmanuel Oloruntoba Aina

Window opening operations are considered as one of the significant way of regulating indoor climate and maintaining thermal comfort in buildings, even when alternative active devices such as fans and air conditioners are available. This study investigates responses of occupants of the traditional core areas of Ibadan and Ogbomoso to thermal comfort conditions (thermal stress) through window opening behaviours. Climatic data of the two cities were subjected to Evans scale to predict their day and night thermal stress and questionnaires were administered to know how occupants respond to changing thermal conditions through window opening behaviours. Descriptive and inferential statistics were used in analysing the data.The study found the morning periods to be the most comfortable, the afternoon periods offer the most hot discomfort condition and cold discomfort is mostly experienced in the evening periods in both cities. Findings revealed that majority of occupants in both cities prefer to keep their windows opened in the morning and afternoon periods and an increase was observed in the numbers of occupants who prefer to keep their windows closed in the evening periods. This is an indication that building occupants in both cities actively respond to thermal stress using window opening operations. Results obtained from chi square analysis concluded that there is a significant relationship between occupants’ window opening behaviour and thermal conditions at different periods of the day in both cities. Recommendations were given on how to improve on window opening systems in the future.


2019 ◽  
Vol 11 (22) ◽  
pp. 6509
Author(s):  
Hong Jin ◽  
Bo Wang ◽  
Bingbing Han

Overwhelming evidence shows that the harsh climate conditions are affecting urban residents who are living in severe cold areas of China in winter, particularly affecting the frequency and length of outdoor space usage of the elderly. This study aims (1) to establish the modified model which is suitable for the harsh climate region, (2) to verify whether the physiological equivalent temperature (PET) index can be evaluated for the outdoor thermal comfort of older adults in severe cold areas of China in winter, (3) to draw the thermal comfort map that is based on the former conclusions. In this study, the outdoor environments in typical residential areas for the elderly of Changchun, China, has been investigated by using field measurement, questionnaire survey, and Computational Fluid Dynamics (CFD) simulation. The results show that the wind direction is the important aspects of model modification and quite possibly one of the most neglected. In addition, it is convenient to evaluate outdoor thermal comfort of the elderly on the basis of the PET index and the neutral PET temperature of elderly people who live in severe cold areas of China in winter is −0.5 degrees Celsius. According to the thermal comfort map, the park green land of urban residential is the best area for the elderly.


Author(s):  
Andre Santos Nouri ◽  
Ioannis Charalampopoulos ◽  
Andreas Matzarakis

Centered on hot dry Mediterranean summer climates, this study assesses the climatic data that was extracted from Lisbon’s meteorological station between the years of 2012 and 2016. Focused on the summer period, existing outdoor human thermal comfort levels that are already prone to extreme heat stress thresholds were evaluated. Such an assessment was rooted around identifying the relationship and discrepancies between singular climatic variables (e.g., air Temperature (Ta)); and adapted thermos-physiological indices (e.g., the modified physiologically equivalent temperature (mPET)), which also consider the influence of radiation fluxes over the human body. In addition, default urban canyon case studies (UCCs) were utilized to supplement how both differ and influence one another, especially under extreme weather conditions including heat waves events (HWE), and very hot days (VHD). Through the use of wholesome thermo-physiological indices, the study revealed that while human health and thermal comfort is already prone to extreme physiological stress (PS) grades during one of the hottest months of the year, the current extremes could be drastically surpassed by the end of the century. Within the examined UCCs, it was identified that the projected PET could reach values of 58.3 °C under a projected climate change RCP8.5/SRES A1FI scenario. Similarly, and in terms of thermo-physiological stress loads, the following could happen: (i) a future “cooler summer day” could present similar conditions to those currently found during a ‘typical summer day; (ii) a future ‘typical summer day’ could present hourly physiological equivalent temperature load (PETL) that recurrently surpassed those currently found during a “very hot day”; and, (iii) a future “very hot day” could reveal severe hourly PETL values that reached 35.1 units beyond the established “no thermal stress” class.


2020 ◽  
Vol 12 (3) ◽  
pp. 629-642
Author(s):  
Mikhail Varentsov ◽  
Natalia Shartova ◽  
Mikhail Grischenko ◽  
Pavel Konstantinov

AbstractThe assessment of bioclimatic conditions at the national scale remains a highly relevant task. It might be one of the main parts of the national strategy for the sustainable development of different regions under changing climatic conditions. This study evaluated the thermal comfort conditions and their changes in Russia according to gridded meteorological data from ERA-Interim reanalysis with a spatial resolution of 0.75° × 0.75° using the two most popular bioclimatic indices based on the human energy balance: physiologically equivalent temperature (PET) and universal thermal comfort index (UTCI). We analyzed the summer and winter means of these indices as well as the repeatability of different thermal stress grades for the current climatological standard normal period (1981–2010) and the trends of these parameters over the 1979–2018 period. We revealed the high diversity of the analyzed parameters in Russia as well as significant differences between the contemporary climate conditions and their changes in terms of mean temperature, mean values of bioclimatic indices, and thermal stress repeatability. Within the country, all degrees of thermal stress were possible; however, severe summer heat stress was rare, and in winter nearly the whole country experienced severe cold stress. Multidirectional changes in bioclimatic conditions were observed in Russia against the general background of climate warming. The European part of the country was most susceptible to climate change because it experiences significant changes both in summer and winter thermal stress repeatability. Intense Arctic warming was not reflected in significant changes in thermal stress repeatability.


2012 ◽  
Vol 610-613 ◽  
pp. 3780-3784 ◽  
Author(s):  
Shahab Kariminia ◽  
Sabarinah Sh Ahmad ◽  
Ibrahim Norhati

Recent rapid urban growth in major cities highlights the role of public squares, where their success can be gauged by its frequency of use and the outdoor thermal conditions. Despite the growing number of studies on outdoor thermal comfort in temperate and dry climate, those done in the Middle East are still limited. This paper examines the effects of landscape attributes on microclimatic conditions and outdoor thermal comfort based on the physiological equivalent temperature (PET) index in Esfahan, Iran. The thermal comfort prediction and correlation between thermal environment and the use of urban space were also explored. Two fieldwork studies were conducted through simultaneous environmental measurement and questionnaire survey in winter and summer at a public square in Esfahan. The obtained data became the basis for Tmrt (mean radiant temperature) and PET estimations, supported by RayMan model. The thermal environment was investigated with different landscape attributes. The derived thermal acceptable range was found to be considerably wider that those reported in previous studies. A strong correlation was confirmed between the thermal conditions and the use of outdoor spaces. The findings demonstrated the strong positive influence of air velocity and evaporative effect of water on thermal comfort. The findings contribute toward suitable design of public squares in climates similar to Esfahan.


2021 ◽  
Vol 13 (5) ◽  
pp. 2736
Author(s):  
Lihua Cui ◽  
Christoph D. D. Rupprecht ◽  
Shozo Shibata

Urban green spaces can provide relaxation, exercise, social interaction, and many other benefits for their communities, towns, and cities. However, green spaces in hot and humid regions risk being underutilized by residents unless thermal environments are designed to be sufficiently comfortable. Understanding what conditions are needed for comfortable outdoor spaces, particularly how people feel in regard to their thermal environment, is vital in designing spaces for public use. Traditional gardens are excellent examples of successful microclimate design from which we can learn, as they are developed over the generations through observation and modification. This study analyzed how Japanese gardens affect people’s thermal stress on extremely hot summer days. Meteorological data was collected in three Japanese gardens, and human thermal comfort was evaluated through physiological equivalent temperature (PET). Statistical analysis examined the relationship between spatial configurations of the gardens and thermal comfort. Our study revealed that Japanese gardens can efficiently ameliorate thermal stress. Spatial analysis showed that garden elements affect thermal comfort variously depending on time of the day and spatial distribution.


Sign in / Sign up

Export Citation Format

Share Document