scholarly journals Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens

2021 ◽  
Vol 13 (5) ◽  
pp. 2736
Author(s):  
Lihua Cui ◽  
Christoph D. D. Rupprecht ◽  
Shozo Shibata

Urban green spaces can provide relaxation, exercise, social interaction, and many other benefits for their communities, towns, and cities. However, green spaces in hot and humid regions risk being underutilized by residents unless thermal environments are designed to be sufficiently comfortable. Understanding what conditions are needed for comfortable outdoor spaces, particularly how people feel in regard to their thermal environment, is vital in designing spaces for public use. Traditional gardens are excellent examples of successful microclimate design from which we can learn, as they are developed over the generations through observation and modification. This study analyzed how Japanese gardens affect people’s thermal stress on extremely hot summer days. Meteorological data was collected in three Japanese gardens, and human thermal comfort was evaluated through physiological equivalent temperature (PET). Statistical analysis examined the relationship between spatial configurations of the gardens and thermal comfort. Our study revealed that Japanese gardens can efficiently ameliorate thermal stress. Spatial analysis showed that garden elements affect thermal comfort variously depending on time of the day and spatial distribution.

2020 ◽  
Vol 11 (2) ◽  
pp. 326-341
Author(s):  
Golnoosh Manteghi ◽  
Tasneem Mostofa ◽  
Hasanuddin Bin Lamit

The present study aims to establish a correlation between the physiological equivalent temperature (PET) and subjective thermal sensation in the Tropics, assessing their impact on local as well as international pedestrians. The pilot test was conducted in six scenarios in the Malacca region of Malaysia. The RayMan model calculated the PET, which is further used to synthetically evaluate the thermal environment for six scenarios, each with a different river width and pavement material. The independent t-test and regression analysis determined the correlation between human thermal comfort acceptability and the thermal environment indices of outdoor spaces. Most of the outdoor thermal comfort assessments have been carried out focusing on local urban residents, while the same assessments on tourists are limited. This research provides necessary insight into the perception of outdoor microclimatic conditions in the Malacca heritage area and also identifies the perception on a few important psychological factors of these two demographic groups. An awareness of such issues would be fruitful for architects, planners and urban designers engaged in the process of designing and planning tourist destinations.


2020 ◽  
Vol 12 (3) ◽  
pp. 629-642
Author(s):  
Mikhail Varentsov ◽  
Natalia Shartova ◽  
Mikhail Grischenko ◽  
Pavel Konstantinov

AbstractThe assessment of bioclimatic conditions at the national scale remains a highly relevant task. It might be one of the main parts of the national strategy for the sustainable development of different regions under changing climatic conditions. This study evaluated the thermal comfort conditions and their changes in Russia according to gridded meteorological data from ERA-Interim reanalysis with a spatial resolution of 0.75° × 0.75° using the two most popular bioclimatic indices based on the human energy balance: physiologically equivalent temperature (PET) and universal thermal comfort index (UTCI). We analyzed the summer and winter means of these indices as well as the repeatability of different thermal stress grades for the current climatological standard normal period (1981–2010) and the trends of these parameters over the 1979–2018 period. We revealed the high diversity of the analyzed parameters in Russia as well as significant differences between the contemporary climate conditions and their changes in terms of mean temperature, mean values of bioclimatic indices, and thermal stress repeatability. Within the country, all degrees of thermal stress were possible; however, severe summer heat stress was rare, and in winter nearly the whole country experienced severe cold stress. Multidirectional changes in bioclimatic conditions were observed in Russia against the general background of climate warming. The European part of the country was most susceptible to climate change because it experiences significant changes both in summer and winter thermal stress repeatability. Intense Arctic warming was not reflected in significant changes in thermal stress repeatability.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8026 ◽  
Author(s):  
Yao Fu ◽  
Zhibin Ren ◽  
Qiuyan Yu ◽  
Xingyuan He ◽  
Lu Xiao ◽  
...  

China has experienced intensive urbanization over the past decades. However, it is still unclear about the influence of urbanization on urban thermal comfort and how the effect varies with climate condition. Based on long-term daily meteorological data from 1990 to 2015 in four Chinese cities undergoing rapid urbanization, our study tried to detect the long-term dynamics of summer urban thermal comfort across different climate zones and analyze their relationships with urbanization. Our results showed that urbanization can increase urban temperature and decrease relative humidity and wind velocity. Urban thermal comfort and discomfort days also changed greatly, especially in Harbin, Northeast China from 1990 to 2015. However, such changes for different cities across different climate zones are inconsistent. Results also showed that urbanization especially for social economic activities can have a significant influence on the physiological Equivalent Temperature (PET). Compared with southern cities, the PET in northern cities such as Harbin and Changchun in this study is more sensitive to urbanization. These results reveal that the changing patterns of urban thermal comfort in Chinese cities under rapid urbanization, and help government take some effective measures to improve urban thermal environment.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 391 ◽  
Author(s):  
João Gobo ◽  
Marlon Faria ◽  
Emerson Galvani ◽  
Fabio Goncalves ◽  
Leonardo Monteiro

The bioclimatic well-being of individuals is associated with the environmental characteristics of where they live. Knowing the relationships between local and regional climatic variables as well as the physical characteristics of a given region and their implications on thermal comfort is important for identifying aspects of thermal sensation in the population. The aim of this study is to develop an empirical model of human thermal comfort based on subjective and individual environmental patterns observed in the city of Santa Maria, located in the state of Rio Grande do Sul, Brazil (Subtropical climate). Meteorological data were collected by means of an automatic meteorological station installed in the city center, which contained sensors measuring global solar radiation, air temperature, globe temperature (via a grey globe thermometer), relative humidity and wind speed and direction. A total of 1720 people were also interviewed using a questionnaire adapted from the model recommended by ISO 10551. Linear regressions were performed to obtain the predictive model. The observed results proposed a new empirical model for subtropical climate, the Brazilian Subtropical Index (BSI), which was verified to be more than 79% accurate, with a coefficient of determination of 0.926 and an adjusted R2 value of 0.924.


2020 ◽  
Vol 12 (5) ◽  
pp. 2001 ◽  
Author(s):  
Chih-Hong Huang ◽  
Hsin-Hua Tsai ◽  
Hung-chen Chen

Urbanization has influenced the distribution of heat in urban environments. The mutual influence between weather factors and urban forms created by dense buildings intensify human perception of the deteriorating thermal environment in subtropics. Past studies have used real-world measurements and theoretical simulations to understand the relationship between climate factors and the urban heat island effect. However, few studies have examined how weather factors and urban forms are connected to the thermal environment. To understand the influence of various weather factors on urban thermal environments in various urban forms, this study applied structural equation modeling to assumptions of linear relationships and used quantitative statistical analysis of weather data as well as structural conversion of this data to establish the structural relationships between variables. Our objective was to examine the relationships among urban forms, weather factors, and thermal comfort. Our results indicate that weather factors do indeed exert influence on thermal comfort in urban environments. In addition, the thermal comfort of urban thermal environments varies with location and building density. In hot and humid environments in the subtropics, humidity and wind speed have an even more profound impact on the thermal environment. Apparent temperature can be used to examine differences in thermal comfort and urban forms. This study also proved that an urban wind field can effectively mitigate the urban heat island effect. Ventilation driven by wind and thermal buoyancy can dissipate heat islands and take the heat away from urban areas.


2019 ◽  
Vol 11 (9) ◽  
pp. 2480 ◽  
Author(s):  
Cláudia Reis ◽  
António Lopes

The increase and optimization of urban vegetation has been considered an effective mitigation measure of an urban heat island (UHI), with positive effects on human thermal comfort. In this study, the cooling potential of all green spaces in Lisbon was estimated. For that, several mobile measurements of air temperature data were made in a single park (Gulbenkian’s Garden). These measurements were used for the interpolation of air temperature. Furthermore, urban biomass was estimated using remote sensing products, namely Landsat satellite images. Ultimately, a linear regression model was built from the relation between vegetation density and air temperature. Results regarding the estimation of biomass (AGB) in the city of Lisbon were higher in winter than in summer. The urban green spaces cooling potential model showed that for every decrease of 1 °C in air temperature between a measuring point and a reference station we need to increase the area covered by vegetation by 50 m2 (planar measure). This methodology can be applied in other urban areas for the quantification of the cooling effect provided by vegetation in order to improve urban climate thermal conditions and human well-being and, consequently, to mitigate some consequences of future climate change.


2019 ◽  
pp. 1420326X1989146
Author(s):  
Jian Zhang ◽  
Zhonghua Gou ◽  
Yi Lu

Tropical or subtropical climates result in considerable heat stress in outdoor environments, which handicaps social activities in public spaces such as urban parks. This study aims to find out the effects of park planning factors on thermal environments. The research measured 18 urban parks around the city of Gold Coast in Australia from January to March 2018 which is the summer time of the Southern Hemisphere. Climate data were collected for each park, based on which park cooling intensity, mean radiant temperature and physiological equivalent temperature were calculated as thermal environment indicators. Meanwhile, park planning factors such as park tree coverage, park size and distance to major water bodies (the sea) were selected for multiple linear regressions with the thermal indicators. Our findings have confirmed that the park planning factors had significant effects on the thermal indicators. The effect of park tree coverage was most significant. This study provides important evidence and guidance for urban planning to create better outdoor thermal environments in parks to facilitate social activities.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094299
Author(s):  
Liang Zhang ◽  
Liangkui Qi ◽  
Jianhua Liu ◽  
Qingqing Wu

In this article, the thermal environment and the human thermal comfort of car cabin under different driving states in summer were studied experimentally. The weighted predictive mean vote model and the weighted equivalent temperature model were used for calculation and compared with the experimental values. The experimental results show that the air temperature and relative humidity distribution in cabin are affected by the space position and driving state. The temperature of the cabin seat, which is affected by solar radiation and crew, in the heating stage is slightly higher than the air temperature, while the cooling rate in the cooling stage is much lower than the air temperature. The predictive mean vote model and the equivalent temperature model are basically consistent with the actual thermal comfort of human body under the idle and driving conditions with the change of time. The prediction accuracy of the two models under the idle condition is higher than that under the driving condition, and the overall prediction accuracy of the equivalent temperature model is higher than that of the predictive mean vote model.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hanna Leona Lokys ◽  
Jürgen Junk ◽  
Andreas Krein

Projected climate change will cause increasing air temperatures affecting human thermal comfort. In the highly populated areas of Western-Central Europe a large population will be exposed to these changes. In particular Luxembourg—with its dense population and the large cross-border commuter flows—is vulnerable to changing thermal stress. Based on climate change projections we assessed the impact of climate change on human thermal comfort over the next century using two common human-biometeorological indices, the Physiological Equivalent Temperature and the Universal Thermal Climate Index. To account for uncertainties, we used a multimodel ensemble of 12 transient simulations (1971–2098) with a spatial resolution of 25 km. In addition, the regional differences were analysed by a single regional climate model run with a spatial resolution of 1.3 km. For the future, trends in air temperature, vapour pressure, and both human-biometeorological indices could be determined. Cold stress levels will decrease significantly in the near future up to 2050, while the increase in heat stress turns statistically significant in the far future up to 2100. This results in a temporarily reduced overall thermal stress level but further increasing air temperatures will shift the thermal comfort towards heat stress.


Sign in / Sign up

Export Citation Format

Share Document