scholarly journals Beta functions in the quantum field theory

2022 ◽  
Vol 70 (1) ◽  
pp. 157-168
Author(s):  
Nikola Fabiano

Introduction/purpose: The running of the coupling constant in various Quantum Field Theories and a possible behaviour of the beta function are illustrated. Methods: The Callan-Symanzik equation is used for the study of the beta function evolution. Results: Different behaviours of the coupling constant for high energies are observed for different theories. The phenomenon of asymptotic freedom is of particular interest. Conclusions: Quantum Electrodynamics (QED) and Quantum Chromodinamics (QCD) coupling constants have completely different behaviours in the regime of high energies. While the first one diverges for finite energies, the latter one tends to zero as energy increases. This QCD phenomenon is called asymptotic freedom.

2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.


1991 ◽  
Vol 06 (19) ◽  
pp. 3381-3397 ◽  
Author(s):  
V. GUPTA ◽  
D.V. SHIRKOV ◽  
O.V. TARASOV

We develop further the new approach to perturbation theory for renormalizable quantum field theories (proposed some years ago) which gives renormalization-scheme-independent predictions for observable quantities. We call the resulting REnormalization-Scheme-Independent PErturba-tion theory RESIPE, for short. First, we formulate explicitly the relation of RESIPE to the renormalization group formalism for the massless one-coupling case. Then we extend this to the case where particle masses cannot be neglected. Further, we generalize the RESIPE formalism for the theory with two coupling constants. A new scheme-invariant perturbation expansion, without reference to renormalization group techniques, is given which is valid for the general case with masses, several kinematic variables and more than one coupling constant. In conclusion, we argue that the appropriately generalized RESIPE provides us with a picture of perturbative predictions, for renormalizable quantum field theories, that is free from regularization and renormalization scheme ambiguities.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450158 ◽  
Author(s):  
Yu Nakayama

We show that a "constructive derivation" of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence based on the quantum local renormalization group in large-N quantum field theories consistently provides the a – c holographic Weyl anomaly in d = 4 at the curvature squared order in the bulk action. The consistency of the construction further predicts the form of the metric beta function.


2011 ◽  
Vol 26 (17) ◽  
pp. 2913-2925 ◽  
Author(s):  
ABOUZEID M. SHALABY

In this work, we investigate a very important but unstressed result in the work of C. M. Bender, J.-H. Chen, and K. A. Milton, J. Phys. A39, 1657 (2006). These authors have calculated the vacuum energy of the iϕ3 scalar field theory and its Hermitian equivalent theory up to g4 order of calculations. While all the Feynman diagrams of the iϕ3 theory are finite in 0+1 space–time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and nonrenormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+1 space–time dimensions. Relying on this interesting result, we raise a question: Is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering nonrenormalizability of a field theory as a nongenuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.


10.37236/589 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Oliver Schnetz

We consider the number $\bar N(q)$ of points in the projective complement of graph hypersurfaces over $\mathbb{F}_q$ and show that the smallest graphs with non-polynomial $\bar N(q)$ have 14 edges. We give six examples which fall into two classes. One class has an exceptional prime 2 whereas in the other class $\bar N(q)$ depends on the number of cube roots of unity in $\mathbb{F}_q$. At graphs with 16 edges we find examples where $\bar N(q)$ is given by a polynomial in $q$ plus $q^2$ times the number of points in the projective complement of a singular K3 in $\mathbb{P}^3$. In the second part of the paper we show that applying momentum space Feynman-rules over $\mathbb{F}_q$ lets the perturbation series terminate for renormalizable and non-renormalizable bosonic quantum field theories.


1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


1992 ◽  
Vol 07 (04) ◽  
pp. 777-794
Author(s):  
C. P. MARTIN

We analyze whether the so-called method of stochastic analytic regularization is suitable as an intermediate step for constructing perturbative renormalized quantum field theories. We choose a λϕ3 in six dimensions to prove that this regularization method does not in general provide a quantum field theory. This result seems to apply to any field theory with a quadratically UV-divergent stochastic two-point function, for instance λϕ4 and gauge theories in four dimensions.


2008 ◽  
Vol 20 (08) ◽  
pp. 933-949
Author(s):  
C. A. LINHARES ◽  
A. P. C. MALBOUISSON ◽  
I. RODITI

Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviors under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished in both convergent and renormalized amplitudes.


1986 ◽  
Vol 64 (5) ◽  
pp. 624-632 ◽  
Author(s):  
H. C. Lee

Some aspects of recent development in the light-cone gauge and its special role in quantum-field theories are reviewed. Topics discussed include the two- and four-component formulations of the light-cone gauge, Slavnov–Taylor and Becchi– Rouet–Stora identities, quantum electrodynamics, quantum chromodynamics, renormalization of Yang–Mills theory and supersymmetric theory, gravity, and the quantum-induced compactification of Kaluza–Klein theories in the light-cone gauge.


Sign in / Sign up

Export Citation Format

Share Document