scholarly journals Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaiya Klinsukon ◽  
Saisamorn Lumyong ◽  
Thomas W. Kuyper ◽  
Sophon Boonlue

AbstractSoil salinity affects soil quality and reduces plant performance. Arbuscular mycorrhizal fungi (AMF) can enhance the tolerance of plants under salinity stress. Cultivation of eucalyptus (Eucalyptus camaldulensis), which exhibits high water use efficiency, is possible in saline areas to produce raw materials for the pulp industry. We determined the effects of arbuscular mycorrhizal fungi (AMF) on the growth and survival of eucalyptus seedlings under saline conditions. Three different clones of eucalyptus seedlings were pre-inoculated with three salt-tolerant AMF species, namely Glomus sp.2, Gigaspora albida and G. decipiens, and without pre-inoculation. The seedlings were grown in a greenhouse for 45 days. They were then transferred to individual pots, filled with field soil and subsequently treated with NaCl solution until electro-conductivity (EC) reached 10, 15 and 20 dS m−1. They were watered for 90 days under nursery conditions. The results show that increased salinity levels reduced plant performance, fractional AMF root colonization, spore number, and eucalypt K/Na ratio. AMF significantly increased chlorophyll and decreased leaf proline concentrations by more than 50% and 20% respectively and increased the K/Na ratio three- to six-fold compared with non-inoculated plants. Pre-inoculation with AMF before outplanting also improved plant performance by more than 30% under salinity stress compared to non-inoculated plants. We conclude that AMF can alleviate the negative impacts of salinity on plant physiological and biochemical parameters.

2020 ◽  
Author(s):  
Chaiya Klinsukon ◽  
Saisamorn Lumyong ◽  
Thomas W. Kuyper ◽  
Sophon Boonlue

Abstract Background: Soil salinity is an important problem for agriculture and effecting in the inability to use soil for cultivation. High salt levels reduce plant performance. Arbuscular mycorrhizal fungi (AMF) have been reported to enhance the tolerance of plants under salinity stress. For promote cultivation of economic plant in salt stress area that univariable to use to produce raw material for pulp industry. We determined the effects of AMF on the growth and nutrient status of eucalyptus (Eucalyptus camaldulensis Dehn.) seedlings under salinity stress condition.Results: Three different clones of Eucalyptus seedlings were pre-inoculated with three salt-tolerant AMF species, namely Glomus sp.2, Gigaspora albida and Gigaspora decipiens or without pre-inoculated. The seedlings were grown in a greenhouse for 45 days. They were then transplanted into individual pots, filled with field soil and subsequently treated with NaCl solution until the electro-conductivity (EC) reached 10, 15 and 20 dS m-1. They were watered for 90 days under nursery conditions. Increasing salinity levels reduced plant performance, fractional root colonization and the number of spores. Increasing salinity also resulted in a lower K/Na ratio. At the same time, performance of the pre-inoculated plants was significantly higher than that of plant that relied on field inoculum only. AMF also significantly increased chlorophyll and leaf proline concentrations and improved the K/Na balance.Conclusion: The results indicate that pre-inoculation with AMF before out planting improves plant performance under salinity stress due to AMF can improve the negative impacts of salinity on the studied physiological, nutrients uptake and biochemical parameters.


Rhizosphere ◽  
2021 ◽  
pp. 100417
Author(s):  
Sevda Alizadeh ◽  
Syamak Fallahi Gharagoz ◽  
Latifeh Pourakbar ◽  
Sina Siavash Moghaddam ◽  
Masoumeh Jamal Omidi

2020 ◽  
Vol 11 ◽  
Author(s):  
Khondoker M. G. Dastogeer ◽  
Mst Ishrat Zahan ◽  
Md. Tahjib-Ul-Arif ◽  
Mst Arjina Akter ◽  
Shin Okazaki

Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.


2014 ◽  
Vol 35 (4) ◽  
pp. 461-474 ◽  
Author(s):  
Ashwani Kumar ◽  
Joanna F. Dames ◽  
Aditi Gupta ◽  
Satyawati Sharma ◽  
Jack A. Gilbert ◽  
...  

Author(s):  
Hongwen Xu, Yan Lu ◽  
Shuyuan Tong

The impact of arbuscular mycorrhizal fungi (AMF) Glomus. tortuosum on morphology, photosynthetic pigments, chlorophyll (Chl) fluorescence, photosynthetic capacity and rubisco activity of maize under saline stress were detected under potted culture experiments. The experimental result indicated the saline stress notably reduced both dry mass and leaf area in contrast with the control treatment. Nevertheless, AMF remarkably ameliorated dry mass and leaf area under saline stress environment. Besides, maize plants appeared to have high dependency on AMF which improved physiological mechanisms by raising chlorophyll content, efficiency of light energy utilization, gas exchange and rubisco activity under salinity stress. In conclusion, AM could mitigate the growth limitations caused by salinity stress, and hence play a very important role in promoting photosynthetic capacity under salt stress in maize.


2019 ◽  
Vol 65 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Michaela Piliarová ◽  
Katarína Ondreičková ◽  
Martina Hudcovicová ◽  
Daniel Mihálik ◽  
Ján Kraic

Abstract Arbuscular mycorrhizal fungi living in the soil closely collaborate with plants in their root zone and play very important role in their evolution. Their symbiosis stimulates plant growth and resistance to different environmental stresses. Plant root system, extended by mycelium of arbuscular mycorrhizal fungi, has better capability to reach the water and dissolved nutrients from a much larger volume of soil. This could solve the problem of imminent depletion of phosphate stock, affect plant fertilisation, and contribute to sustainable production of foods, feeds, biofuel, and raw materials. Expanded plant root systems reduce erosion of soil, improve soil quality, and extend the diversity of soil microflora. On the other hand, symbiosis with plants affects species diversity of arbuscular mycorrhizal fungi and increased plant diversity supports diversity of fungi. This review summarizes the importance of arbuscular mycorrhizal fungi in relation to beneficial potential of their symbiosis with plants, and their function in the ecosystem.


Author(s):  
Sangeeta Kutty Mullath ◽  
Janusz Błaszkowski ◽  
Byju N. Govindan ◽  
Laila Al Dhaheri ◽  
Sarah Symanczik ◽  
...  

Agricultural practices are known to affect the diversity and efficiency of arbuscular mycorrhizal fungi (AMF) in improving overall plant performance. In the present study we aimed to compare the abundance, richness, and diversity of AMF communities under organic farming of a desert ecosystem in the Arabian Peninsula with those of an adjacent conventional farming system and native vegetation. In total, 12 sites, including six plant species, were sampled from both farming systems and the native site. Spore morphotyping revealed 24 AMF species, with 21 species in the organic farming system, compared to 14 species in the conventional site and none from rhizosphere soil of a native plant (Tetraena qatarensis). The AMF spore abundance, species richness, and Shannon–Weaver diversity index were high under organic farming. In both systems, the AMF community composition and abundance associated with different crops followed similar trends, with pomegranates having the highest values followed by limes, grapes, mangoes, and lemons. Our results show that organic farming in such a desert ecosystem promotes AMF diversity. These data imply that AMF might play an important role in the sustainable production of food in resource-limited desert habitats.


Sign in / Sign up

Export Citation Format

Share Document