scholarly journals Effect of Slam Force Duration on the Vibratory Response of a Lightweight High-Speed Wave-Piercing Catamaran

2015 ◽  
Vol 59 (02) ◽  
pp. 69-84
Author(s):  
Jason John McVicar ◽  
Jason Lavroff ◽  
Michael Richard Davis ◽  
Giles Thomas

When the surface of a ship meets the water surface at an acute angle with a high relative velocity, significant short-duration forces can act on the hull plating. Such an event is referred to as a slam. Slam loads imparted on ships are generally considered to be of an impulsive nature. As such, slam loads induce vibration in the global hull structure that has implications for both hull girder bending strength and fatigue life of a vessel. A modal method is often used for structural analysis whereby higher order modes are neglected to reduce computational effort. The effect of the slam load temporal distribution on the whipping response and vertical bending moment are investigated here by using a continuous beam model with application to a 112 m INCAT wave-piercing catamaran and correlation to full-scale and model-scale experimental data. Experimental studies have indicated that the vertical bending moment is dominated by the fundamental longitudinal bending mode of the structure. However, it is shown here that although the fundamental mode is dominant in the global structural response, the higher order modes play a significant role in the early stages of the response and may not be readily identifiable if measurements are not taken sufficiently close to the slam location. A relationship between the slam duration and the relative modal response magnitudes is found, which is useful in determining the appropriate truncation of a modal solution.

1996 ◽  
Vol 315 ◽  
pp. 151-173 ◽  
Author(s):  
Richard Manasseh

Rotating fluid-filled containers are systems which admit inertial oscillations, which at appropriate frequencies can be represented as inertia wave modes. When forced by a time-dependent perturbation, systems of contained inertia waves have been shown, in a number of experimental studies, to exhibit complex and varied breakdown phenomena. It is particularly hard to determine a forcing amplitude below which breakdowns do not occur but at which linear wave behaviour is still measurable. In this paper, experiments are presented where modes of higher order than the fundamental are forced. These modes exhibit more complex departures from linear inviscid behaviour than the fundamental mode. However, the experiments on higher-order modes show that instabilities begin at nodal planes. It is shown that even a weakly nonlinear contained inertia-wave system is one in which unexpectedly efficient interactions with higher-order modes can occur, leading to ubiquitous breakdowns. An experiment with the fundamental mode illustrates the system's preference for complex transitions to chaos.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hailong Chen ◽  
Baoyu Ni ◽  
Wenjin Hu ◽  
Yanzhuo Xue

The damage effects of ship structures under the contact jet loads of bubble are studied by using an electric spark bubble as well as high-speed photography. A series of model experiments of ship structures under contact explosion was carried out in a water tank. On the one hand, we monitored the displacement and period of the oscillation of a hull plate of a ship model with a large bending rigidity. On the other hand, we observed the overall motion of a box-beam model with a small bending rigidity. The results show that when the distance parameter is less than 0.6, the bubble jet will impact on the surface of the structure directly, which is defined as “contact bubble jet” herein. The contact bubble jet causes significant local loads on the ship and induces the “sagging moment” effect. This mainly results from the relatively negative bending moment caused by the bubble attached to the hull. With the increase of detonation distance, this negative bending moment decreases. As a result, the oscillation amplitude of the ship structure decreases sharply and the oscillation period reduces gradually.


Author(s):  
Yasuhira Yamada ◽  
Kyoko Kameya

The purpose of the present study is to fundamentally investigate dynamic hull girder response due to slamming load. A series of time domain FE-simulation is carried out using a non-uniform finite element beam model of a 8000 TEU container ship where slamming load is applied at the bottom of the bow. The ship is modeled by elaso-plastic material with equivalent ultimate strength and strain rate effect is considered. Hull-girder vertical bending moment as well as deformation modes, bending stress are investigated by varying the time duration of the slamming load which is modeled by sinusoidal impulse. In order to obtain post vibration after the first slamming load explicit analysis is adopted instead of implicit analysis with considering gravity and buoyancy. Buoyancy is modeled by inelastic spring elements. It is found from the present study hull girder vertical bending moment is dependent on time duration of slamming load. Especially if time duration is smaller than natural period response bending moment may become smaller than applied bending moment. Moreover effect of inertia at fore and aft is also investigated in detail.


Author(s):  
S E Heggelund ◽  
T Moan ◽  
S Oma

Methods for calculation of design loads for high-speed vessels are investigated. The influence of operational restrictions on design loads is emphasized. Relevant operational criteria for high-speed displacement vessels are discussed. Procedures and criteria for numerical calculation of operational limits are incomplete and should be further investigated. Operational limits and design loads for a 60 m catamaran are calculated on the basis of linear strip theory. Non-linear effects on design loads are assessed from calculations in regular waves. Simplified formulae commonly used by classification societies for prediction of operational limits seem to over-predict the reduction of motions and wave loads at reduced speed. When operational limits typically given by the shipmaster or the operator are used, the design loads found by direct calculations are comparable with design loads given by classification societies. For vertical bending moment and torsion, the use of active foils is found to increase the linear loads. Owing to reduced motions, the foils reduce the non-linear loads and hence the total loads. The effect of non-linear horizontal loads is not investigated but can be important for transverse bending moment.


Author(s):  
Hui Li ◽  
Jian Zou ◽  
Weijia Sheng ◽  
Xuecong Hu ◽  
Wenjia Hu

Abstract The segmented model test is often used to study the wave load characteristics of large ships as it can account for the hydroealstic effect. The vertical bending moment (VBM) is of crucial importance in ensuring the safety of ocean-going vessels in rough seas, and there exists in the literature a large number of experimental studies of the VBM. For ships with large openings in the deck, for instance, container ships, the lateral wave loads, such as horizontal bending moment (HBM) and torsional moment (TM) in quartering seas, are as important as VBM. There are, however, few studies on the measurement of the coupled horizontal-torsional vibrations of such ships in model tests. In the paper, a method is proposed for designing flexible backbone models that satisfy the similarities of vertical and horizontal bending stiffness as well as the torsional stiffness, and the measurement of the wave load components is also described. In order to meet the similarity of the hull girder stiffness, the backbone cross-section of a complex form is designed. Finite element method (FEM) is used to calculate the natural frequencies and mode shapes of the segmented model. Measurement of the vertical bending moment, horizontal bending moment and torsional moment are calibrated by applying various combinations of loads.


2016 ◽  
Vol 805 ◽  
pp. 31-51 ◽  
Author(s):  
Heng-Dong Xi ◽  
Yi-Bao Zhang ◽  
Jian-Tao Hao ◽  
Ke-Qing Xia

We present experimental studies of higher-order modes of the flow in turbulent thermal convection in cells of aspect ratio ($\unicode[STIX]{x1D6E4}$) 1 and 0.5. The working fluid is water with the Prandtl number ($Pr$) kept at around 5.0. The Rayleigh number ($Ra$) ranges from $9\times 10^{8}$ to $6\times 10^{9}$ for $\unicode[STIX]{x1D6E4}=1$ and from $1.6\times 10^{10}$ to $7.2\times 10^{10}$ for $\unicode[STIX]{x1D6E4}=0.5$. We found that in $\unicode[STIX]{x1D6E4}=1$ cells, the first mode, which corresponds to the large-scale circulation (LSC), dominates the flow. The second mode (quadrupole mode), the third mode (sextupole mode) and the fourth mode (octupole mode) are very weak, on average these higher-order modes each contains less than 4 % of the total flow energy. In $\unicode[STIX]{x1D6E4}=0.5$ cells, the first mode is still the strongest but less dominant, the second mode becomes stronger which contains 13.7 % of the total flow energy and the third and the fourth modes are also stronger (containing 6.5 % and 1.1 % of the total flow energy respectively). It is found that during a reversal/cessation, the amplitude of the second mode and the remaining modes experiences a rapid increase followed by a decrease, which is opposite to the behaviour of the amplitude of the first mode – it decreases to almost zero then rebounds. In addition, it is found that during the cessation (reversal) of the LSC, the second mode dominates, containing 51.3 % (50.1 %) of the total flow energy, which reveals that the commonly called cessation event is not the cessation of the entire flow but only the cessation of the first mode (LSC). The experiment reveals that the second mode and the remaining higher-order modes play important roles in the dynamical process of the reversal/cessation of the LSC. We also show direct evidence that the first mode is more efficient for heat transfer. Furthermore, our study reveals that, during the cessation/reversal of the LSC, $Nu$ drops to its local minimum and the minimum of $Nu$ is ahead of the minimum of the amplitude of the LSC; and reversals can be distinguished from cessations in terms of global heat transport. A direct velocity measurement reveals the flow structure of the first- and higher-order modes.


2014 ◽  
Vol 590 ◽  
pp. 358-362 ◽  
Author(s):  
Yan Qun Han ◽  
Mei Xin Ye

This paper presents a study on mechanical behaviors of three-truss plate-truss composite bridges. Both a model test and numerical finite element analysis (FEA) have been conducted. The results indicate that the deck load is allocated to each truss in twice. The first allocation is among the panel points of bottom chord elements (tie beams), and the other through lateral bracings. When the stiffness of each truss (arch) is approximate, the load allocated to middle truss is about two times more than that in edge truss in the first allocation, and the second allocation makes the load tend to approximate among 3 trusses. But the vertical bending moment of bottom chord elements and the axial force of spandrel hangers in middle truss are about twice as that in the edge truss, which should be paid attention to. The results will be useful as references for design of three-truss plate-truss composite bridges.


1998 ◽  
Vol 353 (1371) ◽  
pp. 981-997 ◽  
Author(s):  
J.–Y. Cheng ◽  
T. J. Pedley ◽  
J. D. Altringham

When a fish swims in water, muscle contraction, controlled by the nervous system, interacts with the body tissues and the surrounding fluid to yield the observed movement pattern of the body. A continuous dynamic beam model describing the bending moment balance on the body for such an interaction during swimming has been established. In the model a linear visco–elastic assumption is made for the passive behaviour of internal tissues, skin and backbone, and the unsteady fluid force acting on the swimming body is calculated by the 3D waving plate theory. The body bending moment distribution due to the various components, in isolation and acting together, is analysed. The analysis is based on the saithe ( Pollachius virens ), a carangiform swimmer. The fluid reaction needs a bending moment of increasing amplitude towards the tail and near–standing wave behaviour on the rear–half of the body. The inertial movement of the fish results from a wave of bending moment with increasing amplitude along the body and a higher propagation speed than that of body bending. In particular, the fluid reaction, mainly designed for propulsion, can provide a considerable force to balance the local momentum change of the body and thereby reduce the power required from the muscle. The wave of passive visco–elastic bending moment, with an amplitude distribution peaking a little before the mid–point of the fish, travels with a speed close to that of body bending. The calculated muscle bending moment from the whole dynamic system has a wave speed almost the same as that observed for EMG–onset and a starting instant close to that of muscle activation, suggesting a consistent matching between the muscle activation pattern and the dynamic response of the system in steady swimming. A faster wave of muscle activation, with a variable phase relation between the strain and activation cycle, appears to be designed to fit the fluid reaction and, to a lesser extent, the body inertia, and is limited by the passive internal tissues. Higher active stress is required from caudal muscle, as predicted from experimental studies on fish muscle. In general, the active force development by muscle does not coincide with the propulsive force generation on the tail. The stiffer backbone may play a role in transmitting force and deformation to maintain and adjust the movement of the body and tail in water.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


Sign in / Sign up

Export Citation Format

Share Document