Dynamic Knockdown of Canting Keel Yachts in Breaking Waves

2009 ◽  
Vol 46 (02) ◽  
pp. 99-106
Author(s):  
Jonathan R. Binns ◽  
Oscar Palos ◽  
Paul Brandner ◽  
Giles Thomas

Yacht canting keel configurations have been developed to maximize the available righting moment by rotating their keel bulb to windward. Regulatory authorities have been required to establish rules covering the design and operation of such systems; however, significant dynamic investigations into their behavior have not been performed. This paper presents results from a theoretical and experimental investigation into the dynamic stability of canting keel sailing yachts when experiencing a knockdown by large breaking waves. Towing tank experiments were conducted on a yacht model with a fixed keel and two canted keel configurations, beam-on to large solitary breaking waves. The motion of the model during the tests was recorded by four video cameras and analyzed using photogrammetry. A comparison of the hydrostatic predictions and experimental results indicate that the traditional GZ approach of assessing the energy required to heel may not be appropriate for yachts with canting keels. In addition, a correlation of the experimental results with the ISO stability index highlights that this index may be unsuitable for categorizing yachts with canting keels with respect to their ability to recover after a knockdown event.

Author(s):  
Steven A. Schmied ◽  
Jonathan R. Binns ◽  
Martin R. Renilson ◽  
Giles A. Thomas ◽  
Gregor J. Macfarlane ◽  
...  

In this paper, a novel idea to produce continuous breaking waves is discussed, whereby a pressure source is rotated within an annular wave pool. The concept is that the inner ring of the annulus has a sloping bathymetry to induce wave breaking from the wake of the pressure source. In order to refine the technique, work is being conducted to better understand the mechanics of surfable waves generated by moving pressure sources in restricted water. This paper reports on the first stage of an experimental investigation of a novel method for generating continuously surfable waves utilising a moving pressure source. The aim was to measure and assess the waves generated by two parabolic pressure sources and a wavedozer [1] for their suitability for future development of continuous breaking surfable waves. The tests were conducted at the Australian Maritime College (AMC), University of Tasmania (UTas) 100 metre long towing tank. The experimental results as variations in wave height (H) divided by water depth (h) as functions of depth Froude number (Frh) and h, together with predictions from both methods, are presented in this paper. Finally, measures of the wave making energy efficiency of each pressure source, and the surfable quality of the waves generated by it, were developed and are presented.


2013 ◽  
Vol 365-366 ◽  
pp. 827-834
Author(s):  
Yi He ◽  
Jin Wen Yang ◽  
Feng Bao

The present paper is on the experimental investigation of a potentially effective method to alleviate the strength of aircraft wake vortex. The research work was carried out in a water-towing tank which equipped with a 2-D PIV system. By using modified flaps attached to the baseline-airfoil, the Rayleigh-Ludwieg instability of the wake vortex was activated, resulting in a premature dissipation of the wake vortex. The experimental results of PIV measurement exhibited that the circulation of the wake vortex was reduced to over 50% for the optimal case at 45 wingspans downstream with suitable settings, which proved the effectiveness of the modified-flap treatment in alleviating the wake vortex under labor conditions.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


2011 ◽  
Vol 101-102 ◽  
pp. 909-912
Author(s):  
Guo Ying Zeng ◽  
Deng Feng Zhao

The three-dimensional vibratory strengthening and polishing technology was used to strengthen and polish aeroengine blades with complicated surfaces. At first, the principle of the strengthening and polishing process was introduced, which combined strengthening process with polishing process. Then, the technological parameters influenced on the surface quality were investigated. The principal variables were the media hardness, the frequency and amplitude of the vibration, and duration of the vibratory strengthening and polishing. The optimum parameters were obtained. Experimental results revealed that, after strengthening and polishing, the surface roughness of aeroengine blades was reduced from Ra0.35-0.5μm to Ra0.1-0.12μm, and fatigue strength was increased by approximately 50%.


Author(s):  
G. Mimmi

Abstract In a previous paper the author proposed a method to reduce the periodic variation in flow rate for an external gear pump. To verify the experimental results, a series of experimental tests on a expressly realized gear pump, was carried out. The pump was equipped with relieving grooves milled into the side plates. The tests were done on a closed piping specifically realized and equipped for measuring the instantaneous flow rate of the fluid through a wedge-shaped hot film probe.


2000 ◽  
Vol 37 (03) ◽  
pp. 146-152
Author(s):  
Eric Thornhill ◽  
Brian Veitch ◽  
Neil Bose

A series of bare-hull resistance and self-propulsion tests were carried out on a 1/8 scale model of a 11.8 m long, waterjet-propelled planing hull in the clear water towing tank at the National Research Council of Canada's Institute for Marine Dynamics. The bare-hull resistance tests, performed with the waterjet inlets closed, spanned a range of eight model velocities and nine ballast conditions consisting of three displacements each with three positions of the longitudinal center of gravity. The hull was then fitted with two model waterjet thrusters and tested over the same speeds and ballast conditions. Dynamic instability, or porpoising, was seen during certain high-speed tests. A discussion of this behavior and its relation to published dynamic stability limits is given.


1988 ◽  
Vol 32 (03) ◽  
pp. 203-207
Author(s):  
W. S. Hunter ◽  
P. N. Joubert

Side forces on a ship traveling at small yaw angles are predicted using slender-body theory. The approach uses the method of matched asymptotic expansions, with a cascade of flat plates as a model for the submarine portion of the ship's hull. Resulting predictions of side force coefficients are then compared with experimentally measured values derived from towing tank tests of a typical (tanker) hull. Correlation between theoretical and experimental results was very good for yaw angles less than 8 deg at low Froude number (Fn = 0.134).


1985 ◽  
Author(s):  
J. Gerritsma ◽  
J. A. Keuning

Model tests with five different keels in combination with one particular hull form have been carried out in the Delft Towing Tank. The variations include a plain deep keel, a keel-centre board, a plain restricted draft keel,a "Scheel" keel and a "winglet" keel. Based on the experimental results performance predictions are given for a 63 ft yacht for windspeeds up to 25 knots. The measured side force and resistance as a function of heeling angle, leeway angle and forward speed are used to analyse the relative merits of the considered keel-hull combinations.


Sign in / Sign up

Export Citation Format

Share Document