PIV-Based Hydrodynamic Analysis of a 2D Lifting Body Using Near-Field Flow Kinematics

2021 ◽  
Author(s):  
Galen W. Ng ◽  
Michael J. DeNapoli ◽  
Adrian S. Onas

The ability to extract quantitative flow information from photographic images of the velocity field using Particle Image Velocimetry (PIV) is a powerful alternative to the more traditional invasive or integrated method techniques. The usage of PIV allows the complete characterization of the flow field, and not just at discrete points. Additionally, with PIV, it is possible to predict the hydrodynamic characteristics of a lifting body without measuring the forces and moments acting upon it. In this paper, the hydrodynamic performance of a NACA 0018 airfoil was determined by analyzing the flow kinematics from a 2D-2C (two-dimensional, two-component) PIV data set. The motivation for this work was to provide a canonical study to show that laser optical measurement techniques such as PIV, can be an attractive alternative to dynamic force testing. The hydrodynamic performance evaluated using PIV data was compared to the computational program XFOIL to assess the validity of the results. The analytical drag force prediction was carried out using the Von Kármán Momentum Integral approach for a flat plate and the Squire-Young boundary layer method as an improved method, whereas the analytical lift force prediction calculation was based on the Kutta-Joukowski theorem. The results show reasonable agreement with the numerical prediction tool XFOIL and they follow the expected trends across all operating conditions. These findings suggest that this methodology might be expanded to conduct hydrodynamic analyses on more complex geometries such as hydrofoils, turbines, propulsors, fin stabilizers, rudders, and other control surfaces using flow kinematics data from PIV.

Author(s):  
U. Meier ◽  
L. Lange ◽  
J. Heinze ◽  
C. Hassa ◽  
S. Sadig ◽  
...  

Self-excited periodic instabilities in a staged lean burn injector could be forced by operating the combustor at off-design conditions. These pressure oscillations were studied in a high pressure single sector combustor with optical access. Two damper configurations were installed and tested with respect to their damping efficiency in relation to the configuration without dampers. For a variety of test conditions, derived from a part load case, time traces of pressure in the combustor were measured, and amplitudes were derived from their Fourier transformation. These measurements were performed for several combinations of the operating parameters, i.e., injector pressure drop, air/fuel ratio (AFR), pilot/main fuel split, and preheat temperature. These tests “ranked” the respective damper configurations and their individual efficiency with respect to the configuration without dampers. Although a general trend could be observed, the ranking was not strictly consistent for all operating conditions. For several test cases, preferably with pronounced self-excited pressure oscillations, phase-resolved planar optical measurement techniques were applied to investigate the change of spatial structures of fuel, reaction zones, and temperature distributions over a period of an oscillation. A pulsating motion was detected for both pilot and main flame, driven by a pulsating transport of the liquid fuel. This pulsation, in turn, is caused by a fluctuating air velocity, in connection with a prefilming airblast type atomizer. A phase shift between pilot and main injector heat release was observed, corresponding to a shift of fuel penetration. Local Rayleigh indices were calculated qualitatively, based on phase-resolved OH chemiluminescence used as marker for heat release, and corresponding pressure values. This identified regions, where a local amplification of pressure oscillations occurred. These regions were largely identical to the reaction regions of pilot and main injector, whereas the recirculation zone between the injector flows was found to exhibit a damping effect.


Author(s):  
Bendaoud Nadia ◽  
Mehala Kadda

Hydrodynamic plain bearings are components that provide the guiding in rotation of rotating machines, such as turbines, the reactors. This equipment works under very severe operating conditions. In order to improve the hydrodynamic performance of these rotating machines, the industrialists specialized in the manufacture of hydrodynamic bearings have designed a bearing model with its textured interior surface. The numerical analysis is carried out to study the for both plain bearings types with a textured a non-textured surface thus to see the improvement of the plain bearing hydrodynamic performances, as well as the fluid flow behavior in motion. The analysis is performed by solving the continuity equation of Navier-Stokes, by the finite volume method, using CFD code. The numerical results show that the most important hydrodynamic characteristics such as pressure, minimal film thickness, friction torque, leakage flow, are significant for the textured plain bearing under rotational velocity of 6000rpm and radial load 10000N compared to obtained for a non-textured plain bearing.


Author(s):  
U. Meier ◽  
L. Lange ◽  
J. Heinze ◽  
C. Hassa ◽  
S. Sadig ◽  
...  

Self-excited periodic instabilities in a staged lean burn injector could be forced by operating the combustor at off-design conditions. These pressure oscillations were studied in a high pressure single sector combustor with optical access. Two damper configurations were installed and tested with respect to their damping efficiency in relation to the configuration without dampers. For a variety of test conditions, derived from a part load case, time traces of pressure in the combustor were measured, and amplitudes were derived from their Fourier transformation. These measurements were performed for several combinations of the operating parameters, i.e., injector pressure drop, air/fuel ratio, pilot/main fuel split and preheat temperature. These tests “ranked” the respective damper configurations and their individual efficiency with respect to the configuration without dampers. Although a general trend could be observed, the ranking was not strictly consistent for all operating conditions. For several test cases, preferably with pronounced self-excited pressure oscillations, phase-resolved planar optical measurement techniques were applied to investigate the change of spatial structures of fuel, reaction zones and temperature distributions over a period of an oscillation. A pulsating motion was detected for both pilot and main flame, driven by a pulsating transport of the liquid fuel. This pulsation, in turn, is caused by a fluctuating air velocity, in connection with a prefilming airblast type atomizer. A phase shift between pilot and main injector heat release was observed, corresponding to a shift of fuel penetration. Local Rayleigh indices were calculated qualitatively, based on phase-resolved OH chemiluminescence used as marker for heat release, and corresponding pressure values. This identified regions, where a local amplification of pressure oscillations occurred. These regions were largely identical to the reaction regions of pilot and main injector, whereas the recirculation zone between the injector flows was found to exhibit a damping effect.


Author(s):  
Simona Babiceanu ◽  
Sanhita Lahiri ◽  
Mena Lockwood

This study uses a suite of performance measures that was developed by taking into consideration various aspects of congestion and reliability, to assess impacts of safety projects on congestion. Safety projects are necessary to help move Virginia’s roadways toward safer operation, but can contribute to congestion and unreliability during execution, and can affect operations after execution. However, safety projects are assessed primarily for safety improvements, not for congestion. This study identifies an appropriate suite of measures, and quantifies and compares the congestion and reliability impacts of safety projects on roadways for the periods before, during, and after project execution. The paper presents the performance measures, examines their sensitivity based on operating conditions, defines thresholds for congestion and reliability, and demonstrates the measures using a set of Virginia safety projects. The data set consists of 10 projects totalling 92 mi and more than 1M data points. The study found that, overall, safety projects tended to have a positive impact on congestion and reliability after completion, and the congestion variability measures were sensitive to the threshold of reliability. The study concludes with practical recommendations for primary measures that may be used to measure overall impacts of safety projects: percent vehicle miles traveled (VMT) reliable with a customized threshold for Virginia; percent VMT delayed; and time to travel 10 mi. However, caution should be used when applying the results directly to other situations, because of the limited number of projects used in the study.


Author(s):  
T J Jemi Jeya ◽  
V Sriram ◽  
V Sundar

This paper presents the results from a comprehensive experimental study on the Quadrant Face Pile Supported Breakwater (QPSB) in two different water depths exposed to three different oblique wave attacks. The results are compared with that for a Vertical face Pile Supported Breakwater (VPSB) for identical test conditions. The paper compares the reflection coefficient, transmission coefficient, energy loss coefficient, non-dimensional pressure, and non-dimensional run-up as a function of the relative water depth and scattering parameter. The results obtained for QPSB are validated with existing results. The salient observations show that QPSB experiences better hydrodynamic performance characteristics than the VPSB under oblique waves.


1997 ◽  
Vol 119 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J. T. Sawicki ◽  
R. J. Capaldi ◽  
M. L. Adams

This paper describes an experimental and theoretical investigation of a four-pocket, oil-fed, orifice-compensated hydrostatic bearing including the hybrid effects of journal rotation. The test apparatus incorporates a double-spool-shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. This configuration yields data that enables determination of the full linear anisotropic rotordynamic model. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Theoretical predictions are made for the same configuration and operating conditions as the test matrix using a finite-difference solver of Reynolds lubrication equation. The computational results agree well with test results, theoretical predictions of stiffness and damping coefficients are typically within thirty percent of the experimental results.


2009 ◽  
Vol 53 (01) ◽  
pp. 48-58
Author(s):  
Said A. El Lababidy ◽  
Neil Bose ◽  
Pengfei Liu ◽  
Dan Walker

The knowledge of the hydrodynamic characteristics and momentum effects of the flow of dynamic positioning (DP) thrusters are important factors in the design of structures around the DP thrusters and in improving DP system reliability. In the present study, the flow field around a DP thruster model was precisely measured in a cavitation tunnel using a two-component laser Doppler velocimetry (LDV) system. These experiments were carried out with and without a nozzle at three different axial planes up to 1.5 diameters downstream, and the results are presented here for a pitch/diameter ratio of 1.2 at near bollard pull operating conditions (J ¼ 0.4 and J ¼ 0.45). This paper shows and compares the results of the DP thruster near wake hydrodynamic and momentum characteristics when operating with and without a nozzle at two different low advance coefficient values.


2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
R C Leaper ◽  
M R Renilson

Underwater noise pollution from shipping is of considerable concern for marine life, particularly due to the potential for raised ambient noise levels in the 10-300Hz frequency range to mask biological sounds. There is widespread agreement that reducing shipping noise is both necessary and feasible, and the International Maritime Organization is actively working on the issue. The main source of noise is associated with propeller cavitation, and measures to improve propeller design and wake flow may also reduce noise. It is likely that the noisiest 10% of ships generate the majority of the noise impact, and it may be possible to quieten these vessels through measures that also improve efficiency. However, an extensive data set of full scale noise measurements of ships under operating conditions is required to fully understand how different factors relate to noise output and how noise reduction can be achieved alongside energy saving measures.


Sign in / Sign up

Export Citation Format

Share Document