Formulation and evaluation of nano structured lipid carriers for intranasal delivery of Buspirone hydrochloride

2021 ◽  
Vol 14 (2) ◽  
pp. 585-593
Author(s):  
Dyandevi Mathure ◽  
Jyotsana R. Madan ◽  
Hemantkumar Arvind Ranpise ◽  
Rajendra Awasthi ◽  
Kamal Dua ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
Huei-Shin Chang ◽  
Yu-Ling Wu ◽  
Hui-Ju Chang ◽  
...  

AbstractThe feasibility of delivering mitochondria intranasally so as to bypass the blood–brain barrier in treating Parkinson's disease (PD), was evaluated in unilaterally 6-OHDA-lesioned rats. Intranasal infusion of allogeneic mitochondria conjugated with Pep-1 (P-Mito) or unconjugated (Mito) was performed once a week on the ipsilateral sides of lesioned brains for three months. A significant improvement of rotational and locomotor behaviors in PD rats was observed in both mitochondrial groups, compared to sham or Pep-1-only groups. Dopaminergic (DA) neuron survival and recovery > 60% occurred in lesions of the substantia nigra (SN) and striatum in Mito and P-Mito rats. The treatment effect was stronger in the P-Mito group than the Mito group, but the difference was insignificant. This recovery was associated with restoration of mitochondrial function and attenuation of oxidative damage in lesioned SN. Notably, P-Mito suppressed plasma levels of inflammatory cytokines. Mitochondria penetrated the accessory olfactory bulb and doublecortin-positive neurons of the rostral migratory stream (RMS) on the ipsilateral sides of lesions and were expressed in striatal, but not SN DA neurons, of both cerebral hemispheres, evidently via commissural fibers. This study shows promise for intranasal delivery of mitochondria, confirming mitochondrial internalization and migration via RMS neurons in the olfactory bulb for PD therapy.


2021 ◽  
Vol 2 (1) ◽  
pp. 100290
Author(s):  
Katharina M. Eyme ◽  
Litia Carvalho ◽  
Christian E. Badr

2021 ◽  
Author(s):  
Dorota Zolkowska ◽  
Chun-Yi Wu ◽  
Michael A. Rogawski

AbstractAllopregnanolone, a positive modulator of GABAA receptors with antiseizure activity, has potential in the treatment of seizure emergencies. Instillation of allopregnanolone in 40% sulfobutylether-β-cyclodextrin into the nose in mice rapidly elevated the seizure threshold in the timed intravenous pentylenetetrazol (ED50, 5.6 mg/kg), picrotoxin (ED50, 5.9 mg/kg), and bicuculline seizure tests. The effect peaked at 15 min, decayed over 1 h, and was still evident in some experiments at 6 h. Intranasal allopregnanolone also delayed the onset of seizures in the maximal PTZ test. At an allopregnanolone dose (16 mg/kg) that conferred comparable effects on seizure threshold as the benzodiazepines midazolam and diazepam (both at doses of 1 mg/kg), allopregnanolone caused minimal sedation or motor toxicity in the horizontal screen test whereas both benzodiazepines produced marked behavioral impairment. In addition, intranasal allopregnanolone failed to cause loss-of-righting reflex in most animals, but when the same dose was administered intramuscularly, all animals became impaired. Intranasal allopregnanolone (10 mg/kg) caused a rapid increase in brain allopregnanolone with a Tmax of ~5 min after initiation of the intranasal delivery. High levels of allopregnanolone were recovered in the olfactory bulb (Cmax, 16,000 ng/mg) whereas much lower levels (Cmax, 670 ng/mg) were present in the remainder of the brain. We conclude that the unique ability of intranasal allopregnanolone to protect against seizures without inducing behavioral adverse effects is due in part to direct nose-to-brain delivery, with preferential transport to brain regions relevant to seizures. Benzodiazepines are commonly administered intranasally for acute seizure therapy, including for the treatment of acute repetitive seizures, but are not transported from nose-to-brain. Intranasal allopregnanolone acts with greater speed, has less propensity for adverse effects, and has the ability to overcome benzodiazepine refractoriness. This is the first study demonstrating rapid functional central nervous system activity of a nose-to-brain-delivered steroid. Intranasal delivery circumvents the poor oral bioavailability of allopregnanolone providing a route of administration permitting its evaluation as a treatment for diverse neuropsychiatric indications.


2007 ◽  
Vol 204 (3) ◽  
pp. 571-582 ◽  
Author(s):  
Ryan A. Adams ◽  
Jan Bauer ◽  
Matthew J. Flick ◽  
Shoana L. Sikorski ◽  
Tal Nuriel ◽  
...  

Perivascular microglia activation is a hallmark of inflammatory demyelination in multiple sclerosis (MS), but the mechanisms underlying microglia activation and specific strategies to attenuate their activation remain elusive. Here, we identify fibrinogen as a novel regulator of microglia activation and show that targeting of the interaction of fibrinogen with the microglia integrin receptor Mac-1 (αMβ2, CD11b/CD18) is sufficient to suppress experimental autoimmune encephalomyelitis in mice that retain full coagulation function. We show that fibrinogen, which is deposited perivascularly in MS plaques, signals through Mac-1 and induces the differentiation of microglia to phagocytes via activation of Akt and Rho. Genetic disruption of fibrinogen–Mac-1 interaction in fibrinogen-γ390-396A knock-in mice or pharmacologically impeding fibrinogen–Mac-1 interaction through intranasal delivery of a fibrinogen-derived inhibitory peptide (γ377-395) attenuates microglia activation and suppresses relapsing paralysis. Because blocking fibrinogen–Mac-1 interactions affects the proinflammatory but not the procoagulant properties of fibrinogen, targeting the γ377-395 fibrinogen epitope could represent a potential therapeutic strategy for MS and other neuroinflammatory diseases associated with blood-brain barrier disruption and microglia activation.


Toxins ◽  
2014 ◽  
Vol 6 (4) ◽  
pp. 1397-1418 ◽  
Author(s):  
Juliette Tinker ◽  
Jie Yan ◽  
Reece Knippel ◽  
Panos Panayiotou ◽  
Kenneth Cornell

Sign in / Sign up

Export Citation Format

Share Document