In silico structure modeling and analysis of basic leucine zipper-domain containing proteins in Dictyostelium discoideum

Author(s):  
Tanu Priya
2007 ◽  
Vol 408 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Ulrike Böer ◽  
Julia Eglins ◽  
Doris Krause ◽  
Susanne Schnell ◽  
Christof Schöfl ◽  
...  

The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium.


2020 ◽  
Author(s):  
María Lopez-Delacalle ◽  
Christian J Silva ◽  
Teresa C Mestre ◽  
Vicente Martinez ◽  
Barbara Blanco-Ulate ◽  
...  

ABSTRACTAdverse environmental conditions have a devastating impact on plant productivity. In nature, multiple abiotic stresses occur simultaneously, and plants have evolved unique responses to cope against this combination of stresses. Here, we coupled genome-wide transcriptional profiling and untargeted metabolomics with physiological and biochemical analyses to characterize the effect of salinity and heat applied in combination on the metabolism of tomato plants. Our results demonstrate that this combination of stresses causes a unique reprogramming of metabolic pathways, including changes in the expression of 1,388 genes and the accumulation of 568 molecular features. Pathway enrichment analysis of transcript and metabolite data indicated that the proline and ascorbate pathways act synchronously to maintain cellular redox homeostasis, which was supported by measurements of enzymatic activity and oxidative stress markers. We also identified key transcription factors from the basic Leucine Zipper Domain (bZIP), Zinc Finger Cysteine-2/Histidine-2 (C2H2) and Trihelix families that are likely regulators of the identified up-regulated genes under salinity+heat combination. Our results expand the current understanding of how plants acclimate to environmental stresses in combination and unveils the synergy between key cellular metabolic pathways for effective ROS detoxification. Our study opens the door to elucidating the different signaling mechanisms for stress tolerance.HIGHLIGHTSThe combination of salinity and heat causes a unique reprogramming of tomato metabolic pathways by changing the expression of specific genes and metabolic features.Proline and ascorbate pathways act synchronously to maintain cellular redox homeostasisKey transcription factors from the basic Leucine Zipper Domain (bZIP), Zinc Finger Cysteine-2/Histidine-2 (C2H2) and Trihelix families were identified as putative regulators of the identified up-regulated genes under salinity and heat combination.


2013 ◽  
Vol 41 (8) ◽  
pp. S56
Author(s):  
Katsuhiro Togami ◽  
Jiro Kitaura ◽  
Daichi Inoue ◽  
Yuki Kagiyama ◽  
Tomoyuki Uchida ◽  
...  

2017 ◽  
Vol 39 (12) ◽  
pp. 1779-1791 ◽  
Author(s):  
Ali Noman ◽  
Zhiqin Liu ◽  
Muhammad Aqeel ◽  
Madiha Zainab ◽  
Muhammad Ifnan Khan ◽  
...  

2020 ◽  
Author(s):  
Vaishali Khanale ◽  
Anjanabha Bhattacharya ◽  
Rajendra Satpute ◽  
Bharat Char

Abstract BackgroundCotton is an important commodity in the world economy. In this study we have carried out genome-wide identification and bioinformatics characterization of basic leucine zipper domain proteins (bZIPs) from cultivated cotton species G. hirsutum along with two subgenome species of allotetraploid cotton, G. arboreum and G. raimondii. Transcription factors (TFs) are the key regulators in plant development and stress adaptation. Understanding interactions of TFs in cotton crop is important for enhancing stress tolerance and yield enhancement. Among plant TFs, bZIPs plays a major role in seed germination, flower development, biotic and abiotic stress response. Most of the bZIP proteins from cotton remains uncharacterized and can be utilised for crop improvement. In this paper we performed genome-wide identification, phylogenetic analysis, structural characterization and functional role prediction of bZIPs from all three genome species of cotton.ResultsIn the present study genome-wide identification, phylogenetic analysis, structural characterization and functional role prediction of bZIP TFs from G. hirsutum (AADD) along with two subgenome species G. arboreum (A2) and G. raimondii (D5) were performed. A total of 228 bZIP genes of G. hirsutum, 91 bZIP genes of G. arboreum and 86 bZIP genes of G. raimondii were identified from CottonGen database. Cotton bZIP genes were annotated in standard pattern according to their match with Arabidopsis bZIPs. Multiple genes with similar bZIP designations were observed in cotton. Cotton bZIPs are distributed across all 13 chromosomes with varied density. Phylogenetic characterization of all three cotton species bZIPs with Arabidopsis bZIPs classified them into 12 subfamilies, namely A B, C, D, E, F, G, H, I, J, K and S and further into eight subgroups according to functional similarities, viz., A1, A2, A3, C1, C2, S1, S2 and S3.The classification was exclusively based on alignment with Arabidopsis bZIPs further supported by structural characteristics like exon number, amino acid length, common functional motifs shared among subfamilies and basic leucine zipper domain (BRLZ) alignment. Subfamily A and S are having maximum number of bZIP genes, subfamily B, H, J and K are single member families. Cotton is carrying only bZIP17 among the group of bZIP17, 28 and 49 which are known to be crucially worked under endoplasmic reticulum (ER) stress. Cotton bZIP protein functions were predicted from identified motifs and orthologs from varied species.MEME motif analysis identified MYND-Zinc binding domain, tetratricopeptide repeats motif, GluR7, DOG1, (DELAY OF GERMINATION 1) seed dormancy control motif, TGACG sequence specific motif, etc. specifically in some of the subfamily members and presence of bZIP signature domain in all identified bZIPs. Further we explored the BRLZ domain of G. raimondii bZIPs, conserved basic region motif N-X7-R/K is present in almost all subfamily members, variants are GrbZIP62 which is carrying N-X7-I motif and GrbZIP76 with K-X7-R motif. Leucine heptad repeats motif, L-X6-L-X6-L are also present in variant numbers from two to nine with leucine or other hydrophobic amino acid at designated position among 12 subfamily members.STRING protein interaction network analysis of G.raimondii bZIPs observed strong interaction between A-D subfamily members, C-S subfamily members and between GrbZIP17- GrbZIP60. NLS analysis of G. raimondii bZIPs observed conserved NLS sequences among subfamilies.ConclusionThis study analyzed, annotated and phylogenetically classified bZIP proteins from cultivated cotton species G. hirsutum along with two subgenome species G. arboreum and G. raimondii. Cotton bZIPs are classified into twelve subfamilies and eight subgroups. bZIP gene duplications are observed in all three cotton species. We have identified conserved functional motifs among different subfamilies of cotton bZIP proteins and correlated for the prediction of function along with reported function. Explored BRLZ domain structural analysis of G. raimondii bZIPs will be useful in further basic characterization of bZIP proteins of cultivated cotton species G. hirsutum. STRING protein interaction analysis of G. raimondii bZIPs resulted in prediction of interactions among A- D, B-K and C-S subfamily members. Phylogenetic analysis of this study will certainly help in the selection of specific cotton bZIP genes according to the close alignment with Arabidopsis orthologs or subgenome homolog.


Sign in / Sign up

Export Citation Format

Share Document