Prevalence and antibiogram of pseudomonas aeruginosa and acinetobacter baumannii in the clinical samples from tertiary care hospital

2016 ◽  
Vol 3 (3) ◽  
pp. 275
Author(s):  
Sundaram Mohan ◽  
Khaja Mohiddin Shaik ◽  
Anandi Vishwanathan
2018 ◽  
Vol 10 (02) ◽  
pp. 208-213 ◽  
Author(s):  
Jayanthi Siva Subramaniyan ◽  
Jeya Meenakshi Sundaram

Abstract CONTEXT: ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. Pseudomonas aeruginosa and Acinetobacter species are "very successful" pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge. AIMS: To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the bla gene presence among the Pseudomonas aeruginosa and Acinetobacter baumannii. SETTINGS AND DESIGN: The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital. METHODS AND MATERIALS: The isolates of Pseudomonas species and Acinetobacter species were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for bla gene detection by PCR method. RESULTS: In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were Pseudomonas aeruginosa and 25 % were Acinetobacter baumannii. The subtypes of bla VIMMBL producing P.aeruginosa were 26%.The predominant gene coding for MBL activity in A.baumannii were found to be bla OXA gene 11.9%. The gene accession numbers were KF975367, KF975372. CONCLUSIONS: We have to control the development and dissemination of these superbugs among the ICU's.


Author(s):  
Mousumi Karmaker ◽  
Md. Abul Khair ◽  
Una Jessica Sarker ◽  
Rabeya Nahar Ferdous ◽  
Sa’dia Tasnim ◽  
...  

Pseudomonas aeruginosa is one of the most widespread gram-negative microorganisms identified in the clinical samples and most common causes of hospital acquired infection. P. aeruginosa is affecting both indoor and outdoor patients throughout the world. Due to frequent mutation in          P. aeruginosa highly resistant strain developed rapidly. The aim of the study to determine the prevalence of P. aeruginosa species in different samples isolated from a Tertiary care Hospital as well as determination their diverse antibiotic resistance pattern. This cross-sectional study was carried out to determine in-vitro resistance pattern of P. aeruginosa isolates to common antimicrobial agents by disc diffusion method. Various clinical samples were collected from Bangladesh Health Sciences Hospital (BIHS) General Hospital, Dhaka. This research was carried out in the Department of Microbiology of Bangladesh University of Health Sciences (BUHS). Isolation, identification and antibiogram were performed for P. aeruginosa following standard microbiological laboratory procedure. A total of 218 P. aeruginosa were isolated from 3062 different clinical specimens which are statistically significant (p<0.0001). Among the highest number of P. aeruginosa were isolated from outdoor patients 140 compare to Indoor patients which are significantly higher (p <0.013). In this study Male (68.3%) are more vulnerable to P. aeruginosa infection compare to females (31.7%) which is also statistically significant. Young people (less than 35 years) were more susceptible to P. aeruginosa infection which is also statistically significant (p< 0.01). The highest number of P. aeruginosa was isolated from wound (43.12%), followed by pus (40.33%), sputum (8.71%) urine (7.80%). The maximum number of P. aeruginosa in various samples was resistant to aztreonam and co-tromoxazole followed by cephalosporins, aminoglycosides, carbapenems. The most sensitive antibiotic was colistin of followed by gentamycin and tetracycline. To control the spread of resistant bacteria, it is disparagingly vital to have stringent antibiotic guidelines. The antibiotic susceptibility pattern of P. aeruginosa requires to be continuously monitored in specialized clinical units and the results readily made available to the clinicians to minimize the resistance.


2021 ◽  
Vol 23 (4) ◽  
pp. 290-296
Author(s):  
Rojina Darnal ◽  
Mehraj Ansari ◽  
Ganesh Rai ◽  
Kul Raj Rai ◽  
Shiba Kumar Rai

Carbapenemases are the enzymes that catalyze β–lactam groups of antibiotics. The carbapenemase producers are resistant to β–lactam antibiotics and are usually multidrug-resistant bacteria challenging widely used therapeutics and treatment options. Therefore, the detection of carbapenemase activity among clinical isolates is of great therapeutic importance. We aimed to study the MDR and carbapenemase-producing Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from various clinical samples at a tertiary care hospital in Nepal. A total of 3,579 clinical samples were collected from the patients visiting the Department of Microbiology, B&B Hospital, Gwarko, Lalitpur. The samples were processed to isolate K. pneumoniae and P. aeruginosa and then subjected to antibiotic susceptibility testing (AST) by the Kirby-Bauer disk diffusion method. Phenotypic detection of carbapenemase activity was performed in the imipenem-resistant isolates by the modified Hodge test (MHT). Of the total samples, 1,067 (29.8%) samples showed significant growth positivity, out of which 190 (17.3%) isolates were K. pneumoniae and 121 (11.3%) were P. aeruginosa. Multidrug resistance was seen in 70.5% of the K. pneumoniae isolates and 65.3% of the P. aeruginosa isolates. Carbapenemase production was confirmed in 11.9%, and 12.2% of the imipenem-resistant K. pneumoniae and P. aeruginosa isolates, respectively, by the MHT. This study determined the higher prevalence of MDR among K. pneumoniae and P. aeruginosa; however, carbapenemase production was relatively low.


Sign in / Sign up

Export Citation Format

Share Document