scholarly journals IDENTIFICATION OF CRYSTALLINE COMPONENT IN URINARY CALCULI BY SCANNING ELECTRON MICROSCOPY AND PARTIAL DISSOLUTION METHOD

1987 ◽  
Vol 78 (5) ◽  
pp. 853-859
Author(s):  
Hidenobu Iwata
1971 ◽  
Vol 8 (11) ◽  
pp. 1487-1491 ◽  
Author(s):  
D. A. Walker

Investigations by scanning electron microscopy have revealed that ingestion of Rosalina floridana (Cushman) and Quinqueloculina seminulum (Linné) (Foraminiferida) by the common periwinkle Littorina littorea Linné results in severe etching of the surface veneer in the rotalids studied, and removal of the surface veneer and partial dissolution of the underlying tabular layer of calcite in the miliolids examined. The acidic nature of the digestive juices is suggested as the agent responsible for this phenomenon. Observations of test wall construction is compared to current models of calcite secretion.


2015 ◽  
Vol 48 (6) ◽  
pp. 1794-1804 ◽  
Author(s):  
Paramita Chatterjee ◽  
Samiran Pramanik ◽  
Alok Kumar Mukherjee

A combination of IR spectroscopy, scanning electron microscopy (SEM) and powder X-ray diffraction has been used to analyze the compositional and architectural variation across the different parts (core, middle and outer layers) of five human urinary calculi (KS1–KS5) from eastern India. Rietveld quantitative phase analysis using X-ray powder diffraction revealed that the composition of the core regions in KS1–KS3 and KS5 is exclusively whewellite, whereas in KS4 it is a mixture of whewellite (84.5 wt%) and carbonated hydroxyapatite (15.5 wt%). While one of the renal stones, KS1, is composed of only whewellite in all three regions, a distinct variation in phase composition from the core towards the periphery has been observed in KS2–KS5. A drastic change in phase composition has been noted in KS5, with the major constituent phases in the core, middle and outer layers as whewellite (100.0 wt%), anhydrous uric acid (60.7 wt%) and carbonated hydroxyapatite (69.6 wt%), respectively. The crystallite size of whewellite in different parts of the kidney stones varies between 91 (1) and 167 (1) nm, while the corresponding sizes of the anhydrous uric acid in KS5 and carbonated hydroxyapatite in KS3 are 107 (1) and 18 (1)–20 (1) nm, respectively. SEM images of the kidney stones showed different levels of organization, resulting from an agglomeration of crystallites with diverse shapes and sizes.


1984 ◽  
Vol 12 (4) ◽  
Author(s):  
P. Hyacinth ◽  
K. Rajamohanan ◽  
F.Y.M. Marckar ◽  
P. Koshy ◽  
S. Krishnamurthy

Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document