scholarly journals COMPARISON OF THREE PREDICTIVE ANALYSIS METHODS FOR WIND TURBINE GEAR BOXES. A CASE STUDY OF SATELLITE BEARING WEAR AND GEAR TEETH SURFACE DAMAGES

10.6036/9685 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 254-259
Author(s):  
RAMÓN MIRALBÉS BUIL ◽  
DAVID RANZ ANGULO

The aim of this paper is to review and compare diverse predictive analysis methods used for the inspection of the internal conditions of wind generator gear box bearings on wind turbines in order to determine the accuracy, deficiencies, and validity of these methods. Thus, three different types of predictive analysis will be compared: visual analysis using boroscopy (that is an industrial type of endoscopy), oil analysis, and bearing condition unit vibrations analysis. These analyses were carried out on a ten-year-old wind farm that has forty-eight 800 kW wind turbines; the results will allow other similar wind farms to determine the most appropriate predictive strategies. In the studied gear boxes, damage is restricted to the bearings of the satellites. Therefore, the study has focused on this part of the gear box. The study demonstrates that bearing condition unit vibration analysis can predict severe damage in all cases, so it is possible to predict bearing failure within 6 months; as a result, it is possible to establish the optimal moment to substitute bearings to avoid catastrophic failure in gear boxes. In addition, given that a boroscopy can detect all types of damage in the bearings of the satellite and thus can predict failure ahead of 6 months as well as detect low and moderate damage, it becomes the method of preference. Keywords: wind, turbine, gear box, bearing, predictive analysis

2018 ◽  
Vol 15 (1) ◽  
pp. 86-90
Author(s):  
Muhammad Usman ◽  
Bilal Akbar ◽  
Sajjad Miran ◽  
Qazi Shahzad Ali

Purpose Wind energy has become a distinguished field of energy among the alternative energy resources. Despite economical disadvantages, the production of wind energy is desired to fulfill the demand of the energy. Low reliability is a big issue in the development of wind energy technology that has affected wind farm operations. The purpose of the study is to find the reason for the low reliability and high downtime for wind turbines. Design/methodology/approach The systems engineering approach has a high success rate in handling complex systems such as wind farms. A failure finding model is presented based on the systems engineering, with the focus to analyze the failures at the interfaces. The required data have been collected by reviewing the literature. Findings Gear box interfaces are a vital reason for the higher downtime and frequent failures of wind turbines, and the bearing and the lubricant in the gear box are affected because of their inappropriate combination. Originality/value The reliability and the maintainability of the wind turbine is a topic of major importance. The study is an attempt to contribute to a more sophisticated solution to the reliability problem of the wind turbine. Moreover, it shows the importance of interfaces in designing the complex systems.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 882 ◽  
Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le ◽  
Yaohua Guo

The composite bucket foundation (CBF) for offshore wind turbines is the basis for a one-step integrated transportation and installation technique, which can be adapted to the construction and development needs of offshore wind farms due to its special structural form. To transport and install bucket foundations together with the upper portion of offshore wind turbines, a non-self-propelled integrated transportation and installation vessel was designed. In this paper, as the first stage of applying the proposed one-step integrated construction technique, the floating behavior during the transportation of CBF with a wind turbine tower for the Xiangshui wind farm in the Jiangsu province was monitored. The influences of speed, wave height, and wind on the floating behavior of the structure were studied. The results show that the roll and pitch angles remain close to level during the process of lifting and towing the wind turbine structure. In addition, the safety of the aircushion structure of the CBF was verified by analyzing the measurement results for the interaction force and the depth of the liquid within the bucket. The results of the three-DOF (degree of freedom) acceleration monitoring on the top of the test tower indicate that the wind turbine could meet the specified acceleration value limits during towing.


Author(s):  
Paul Sclavounos ◽  
Christopher Tracy ◽  
Sungho Lee

Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10–15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle accleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.


Author(s):  
Hideyuki Suzuki ◽  
Yu Kitahara ◽  
Yukinari Fukumoto

A wide range of platform concepts have been investigated for a floating wind turbine. So far analysis and design of motion characteristics of the platform is main research concern. One key research area less focused is floating platform related risk. If the wind energy would be one of the major sources of electric power supply, wind farms which are comprised of large number of floating wind turbines must be deployed in the ocean. Wind turbines are relatively closely arranged in a wind farm. In such an arrangement, a wind turbine accidentally started drifting will have some possibility to collide with floater and moorings of neighboring moored floating wind turbines, and might initiate another drift which might cause progressive drifting of wind turbines. In the previous report, a scenario of progressive drifting of wind turbines was investigated and associated risk was formulated. Quantitative risk of several arrangements of wind farm was estimated. Effects of arrangement of wind turbines in a wind farm and safety factor used in the design of moorings is discussed. Probability of initial drift was evaluated analyzing past records of accidents and design of mooring. In this research, strength of mooring system was modeled more precisely and probabilistic model was developed considering aged deterioration. Risk of progressive drifting was evaluated and safety factor required to realize a acceptable risk of a wind farm was discussed.


Author(s):  
Hideyuki Suzuki ◽  
Masaru Kurimoto ◽  
Yu Kitahara ◽  
Yukinari Fukumoto

A wide range of platform types have been investigated for a floating wind turbine. Most of the research projects on a floating wind turbine assume that a land based wind turbine is to be installed on a platform with minimum modification to reduce the overall cost. For this reason, allowable limit of a motion of wind turbine is limited to lower value, for example, five degrees for static inclination and one to two degrees for pitching motion. So far analysis and design of motion characteristics of the platform have been main research concern. One key research area less focused is floating platform related risk. If the wind energy would be one of the major sources of power supply, wind farms which are comprised of large number of floating wind turbines must be deployed in the ocean. Wind turbines will be closely spaced in a wind farm so that installation cost should be minimized. In such an arrangement, a wind turbine accidentally started drifting has some possibility to collide or contact with the moorings of neighboring wind turbines and might cause progressive drifting of wind turbines. This paper present investigation of scenario of progressive drifting of floating wind turbines and evaluate risk of the scenario. Quantitative risk of several arrangements of wind farms is estimated. Effect of arrangement of wind turbines in a wind farm and safety factor used in design moorings is discussed.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 282
Author(s):  
Feifei Xue ◽  
Heping Duan ◽  
Chang Xu ◽  
Xingxing Han ◽  
Yanqing Shangguan ◽  
...  

On a wind farm, the wake has an important impact on the performance of the wind turbines. For example, the wake of an upstream wind turbine affects the blade load and output power of the downstream wind turbine. In this paper, a modified actuator line model with blade tips, root loss, and an airfoil three-dimensional delayed stall was revised. This full-scale modified actuator line model with blades, nacelles, and towers, was combined with a Large Eddy Simulation, and then applied and validated based on an analysis of wind turbine wakes in wind farms. The modified actuator line model was verified using an experimental wind turbine. Subsequently, numerical simulations were conducted on two NREL 5 MW wind turbines with different staggered spacing to study the effect of the staggered spacing on the characteristics of wind turbines. The results show that the output power of the upstream turbine stabilized at 5.9 MW, and the output power of the downstream turbine increased. When the staggered spacing is R and 1.5R, both the power and thrust of the downstream turbine are severely reduced. However, the length of the peaks was significantly longer, which resulted in a long-term unstable power output. As the staggered spacing increased, the velocity in the central near wake of the downstream turbine also increased, and the recovery speed at the threshold of the wake slowed down. The modified actuator line model described herein can be used for the numerical simulation of wakes in wind farms.


Author(s):  
Bryan E. Kaiser ◽  
Svetlana V. Poroseva ◽  
Michael A. Snider ◽  
Rob O. Hovsapian ◽  
Erick Johnson

A relatively high free stream wind velocity is required for conventional horizontal axis wind turbines (HAWTs) to generate power. This requirement significantly limits the area of land for viable onshore wind farm locations. To expand a potential for wind power generation and an area suitable for onshore wind farms, new wind turbine designs capable of wind energy harvesting at low wind speeds are currently in development. The aerodynamic characteristics of such wind turbines are notably different from industrial standards. The optimal wind farm layout for such turbines is also unknown. Accurate and reliable simulations of a flow around and behind a new wind turbine design should be conducted prior constructing a wind farm to determine optimal spacing of turbines on the farm. However, computations are expensive even for a flow around a single turbine. The goal of the current study is to determine a set of simulation parameters that allows one to conduct accurate and reliable simulations at a reasonable cost of computations. For this purpose, a sensitivity study on how the parameters variation influences the results of simulations is conducted. Specifically, the impact of a grid refinement, grid stretching, grid cell shape, and a choice of a turbulent model on the results of simulation of a flow around a mid-sized Rim Driven Wind Turbine (U.S. Patent 7399162) and in its near wake is analyzed. This wind turbine design was developed by Keuka Energy LLC. Since industry relies on commercial software for conducting flow simulations, STAR-CCM+ software [1] was used in our study. A choice of a turbulence model was made based on the results from our previous sensitivity study of flow simulations over a rotating disk [2].


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
S. Jafari ◽  
N. Chokani ◽  
R. S. Abhari

The accurate modeling of the wind turbine wakes in complex terrain is required to accurately predict wake losses. In order to facilitate the routine use of computational fluid dynamics in the optimized micrositing of wind turbines within wind farms, an immersed wind turbine model is developed. This model is formulated to require grid resolutions that are comparable to that in microscale wind simulations. The model in connection with the k-ω turbulence model is embedded in a Reynolds-averaged Navier–Stokes solver. The predictions of the model are compared to available wind tunnel experiments and to measurements at the full-scale Sexbierum wind farm. The good agreement between the predictions and measurements demonstrates that the novel immersed turbine model is suited for the optimized micrositing of wind turbines in complex terrain.


2018 ◽  
Vol 43 (2) ◽  
pp. 201-209
Author(s):  
Gino Iannace ◽  
Amelia Trematerra ◽  
Umberto Berardi

In Italy, wind turbines with a nominal power below 1 MW can be installed following simplified authorization procedures and are therefore becoming the preferred choice for promoters. The assessment of the noise of wind farms is not easy, due to economic reasons, with it being difficult to stop and assess the relative contribution of each wind turbine. Several acoustic measurements were taken inside homes located near a wind farm consisting of three wind turbines, each with a nominal power of 1 MW. The acoustic measurements were taken by placing sound level meters inside the houses at different wind speed values and wind directions. The acoustic measurements were taken using the acoustically analogous place technique. For economic reasons, the plant cannot be switched off. In this case, the sound field generated by the operation of the wind turbines was measured by placing two sound level meters in a house.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1566 ◽  
Author(s):  
Md. Noor-A-Rahim ◽  
M. Khyam ◽  
Xinde Li ◽  
Dirk Pesch

The use of renewable energy has increased dramatically over the past couple of decades. Wind farms, consisting of wind turbines, play a vital role in the generation of renewable energy. For monitoring and maintenance purposes, a wind turbine has a variety of sensors to measure the state of the turbine. Sensor measurements are transmitted to a control center, which is located away from the wind farm, for monitoring and maintenance purposes. It is therefore desirable to ensure reliable wireless communication between the wind turbines and the control center while integrating the observations from different sensors. In this paper, we propose an IoT based communication framework for the purpose of reliable communication between wind turbines and control center. The communication framework is based on repeat-accumulate coded communication to enhance reliability. A fusion algorithm is proposed to exploit the observations from multiple sensors while taking into consideration the unpredictable nature of the wireless channel. The numerical results show that the proposed scheme can closely predict the state of a wind turbine. We also show that the proposed scheme significantly outperforms traditional estimation schemes.


Sign in / Sign up

Export Citation Format

Share Document